首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By analyzing the vector magnetograms of Huairou Solar Observing Station (HSOS) taken at the line center (0.0 Å) and the line wing (−0.12 Å) of FeI λ5324.19 Å, we make an estimate of the measured errors in transversal azimuths (δ?) caused by Faraday rotation. Since many factors, such as the magnetic saturation and scattered light, can affect the measurement accuracy of the longitudinal magnetic field in the umbrae of sunspots, we limit our study in the region ∣Bz∣ < 800 G. The main mean azimuth rotations are about 4°, 6°, 7° and 9°, while ∣Bz∣ are in the ranges of 400–500 G, 500–600 G, 600–700 G and 700–800 G, respectively. Moreover, we find there is also an azimuth rotation of about 8° at the wavelength offset −0.12 Å of the line compared against a previous numerical simulation.  相似文献   

2.
In this paper we will report the results of the computation of cutoff rigidities of vertical and non-vertical incident cosmic ray particles. Non-vertical effective cutoff rigidities have been computed by tracing particle trajectories through the “real” geomagnetic magnetic field comprising the International Geomagnetic Reference Field model (IGRF95, IAGA Division 5 Working Group 8, 1996: Sabaka, T.J., Langel, R.A., Baldwin, R.T., Conrad, J.A. The geomagnetic field, 1900–1995, including the large scale fields from magnetospheric sources and NASA candidate models for the 1995 IGRF revision. J. Geomag. Geoelect. 49, 157–206, 1997.) and the Tsyganenko [Tsyganenko, N.A. A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci. 37, 5–20, 1989.] magnetosphere model. The computation have been done for the backward route (from Antarctica to Italy) of the Italian Antarctic ship survey 1996–1997, for geographic points corresponding to the daily average coordinates of the ship; for zenith angles 15°, 30°, 45° and 60°, and azimuth angles from 0° to 360° in steps of 45°. By means of the obtained non-vertical cutoffs the apparent cutoff rigidities have been calculated. The information on integral multiplicities of secondary neutrons detected by the neutron monitor in dependence of the zenith angle of incoming primary cosmic ray particles have also been used. This information is based on the theoretical calculations of meson-nuclear cascades of primary protons with different rigidities arriving to the Earth’s atmosphere at the zenith angles of 0°, 15°, 30°, 45°, 60° and 75°. The difference between the computed apparent and vertical cutoff rigidities reaches ∼1 GV at rigidities >7–8 GV. At rigidities of 10–16 GV, the difference between the apparent and vertical cutoff rigidities is larger than that obtained earlier by Clem et al. [Clem, J.M., Bieber, J.W., Duldig, M., Evenson, P., Hall, D., Humble, J.E. Contribution of obliquely incident particles to neutron monitor counting rate. J. Geophys. Res. 102, 26919–26926, 1997.] and Dorman et al. [Dorman, L.I., Villoresi, G., Iucci, N., Parisi, M., Tyasto, M.I., Danilova, O.A., Ptitsyna, N.G. Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 3. Geomagnetic effects and coupling functions. J. Geophys. Res. 105, 21047–21056, 2000.].  相似文献   

3.
基于航天工程中对于发动机试车台矢量推力现场动态校准需求,以摆锤式动态力加载装置为力源,研制了发动机试车台矢量推力现场动态校准装置。在发动机试车台试验校准点有限的情况下,将人工智能技术应用在校准工作中,对矢量推力的动态响应特性进行校准与补偿。验证结果表明,该方案动态性能优异,响应迅速,满足试车台矢量推力校准的需求,为后续进一步准确测试矢量推力提供了依据。  相似文献   

4.
远场测量是获得天线辐射特性的一种常用方法。然而对于一维电尺寸大,另一维电尺寸小的天线,如基站天线,由于场地因素的限制,往往不能满足远场测量条件,用近场测量又费时费力。在这种准远场条件下,天线测量结果与远场情况下的测量结果有较大差异。本文基于柱面波展开,给出了一种由准远场距离上测得的方向图计算远场的理论计算方法,经过该算法补偿后的结果与理论计算结果吻合很好,从而验证了算法的正确性。  相似文献   

5.
We revisit an example of “quasi-steady” magnetic reconnection at the dayside magnetopause on February 11, 1998, observed by Equator-S and Geotail at the dawnside magnetopause. Phan et al. [Phan, T.D. et al., 2000. Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets. Nature 404, 848–850.] reported oppositely directed jets at these spacecrafts and inferred a length of the reconnection line of about 38RE. Pinnock et al. [Pinnock, M., Chisham, G., Coleman, I.J., Freeman, M.P., Hairston, M., Villain, J.-P., 2003. The location and rate of dayside reconnection during an interval of southward interplanetary magnetic field. Ann. Geophys. 21, 1467–1482.] used measurements from SuperDARN radars to show that the reconnection electric field was variable. Here we complement this work by obtaining snapshots of the reconnection electric field from the in situ observations. To do this, we apply a reconstruction method based on a model of compressible Petschek-type magnetic reconnection. This independent method uses magnetic field observations as input data to calculate the reconnection electric field. We obtain average values of Erec in the range of 0.4–2.4 mV/m. Further we infer a distance perpendicular to the reconnection line of 0.4–0.6RE. The model results are compared with the two studies mentioned above. It thus appears that while the transfer of momentum for this event is indeed large-scale, the actual rate depends on the time it is measured.  相似文献   

6.
Using Atmospheric Infrared Sounder (AIRS) products of atmospheric temperature and geopotential height, we investigate the atmospheric response to HE0611, which was found and investigated by [Qin, H., Kawamura, H., Sakaida, F., Ando, K. A case study of the tropical Hot Event in November 2006 (HE0611) using a geostationary meteorological satellite and the TAO/TRITON mooring array. J. Geophys. Res. 113, C08045, doi: 10.1029/2007JC004640, 2008]. HE0611 was formed by connecting two very high SST areas, HE0611-East and HE0611-West. The period-mean atmosphere temperatures at levels of 925 and 850 hPa in HE0611-West are higher, by about 0.5 K, than those in WE0611-East while the atmospheric temperatures at middle to high levels (700–300 hPa) are higher in HE0611-East. The period-mean geopotential heights HE0611-East are much lower than those in HE0611-West for the levels from the surface to 400 hPa. The mean geopotential heights from 400 hPa to 200 hPa are higher in HE0611-East. In the middle and high layers over HE0611-West, the atmosphere temperatures gradually decrease from 7th to 17th, and then increase significantly. The increase in HE0611-East starts from 15th November, which is earlier than that of HE0611-West. The geopotential heights in the high layer of both the areas also show corresponding behaviors. The lagged atmospheric response in the western part is confirmed by the correlation analysis. It emerges that the atmospheric response to HE0611 is well organized and associated with deep convention in HE0611-East and subsidence in HE0611-West. These are also consistent with the HE0611 features and evolution revealed by earlier HE studies.  相似文献   

7.
Precursory phenomena in the ionosphere, atmosphere and groundwater before large earthquakes (M > 6.5) are extensively investigated toward the earthquake prediction. Upward tornado type seismic clouds occurred near the epicenter associated with strong LF-VLF radio noises from lightning discharges in the evening of January 9, 1995 [Yamada, T., Oike, K. On the increase of electromagnetic noises before and after the 1995 Hyogo-Ken Nanbu earthquake. In: Hayakawa M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. TERRAPUB, Tokyo, pp. 417–427, 1999] and anomalous foEs increases up to 10 MHz were detected at Shigaraki, 90 km of the epicenter and at Kokubunji, 500 km east of the epicenter [Ondoh, T. Anomalous sporadic-E layers observed before M7.2 Hyogo-ken Nanbu earthquake; Terrestrial gas emanation model. Adv. Polar Upper Atmos. Res. 17, 96–108, 2003; Ondoh, T. Anomalous sporadic-E ionization before a great earthquake, Adv. Space Research 34, 1830–1835, 2004] associated with strong ELF noises from lightning discharges in the daytime on January 15, 1995 [Hata, M., Fujii, T., Takumi, I. EM precursor of large-scale earthquakes in Japan, in: Abstracts of International Workshop on Seismo Electromagnetics (IWSE 2005), Univ. Electro-Communications, Chofu, Tokyo, Japan, March 15–17, pp. 182–186, 2005] before the M7.2 Hyogoken–Nanbu earthquake of January 17, 1995. The anomalous foEs increases occurred at epicentral distances within 500 km that are the same as those of the terrestrial gas emanations along active faults before large earthquakes [King, C.-Y. Gas geochemistry applied to earthquake prediction: An overview. J. Geophys. Res. 91(B12), 12269–12281, 1986]. The anomalous foEs increases seem to be a seismic precursor because geomagnetic and solar conditions were very quiet all day on January 15,1995 and the normal foEs in Japanese winter is below 6 MHz. No significant pre-seismic geomagnetic field variation was detected at epicentral distance of 100 km before this earthquake [Ondoh, T., Hayakawa, M. Anomalous occurrence of sporadic-E layers before the Hyogoken–Nanbu earthquake, M7.2 of January 17, 1995. In: Hayakawa, M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, TERRAPUB, Tokyo, pp. 629–639, 1999; Ondoh, T., Hayakawa, M. Seismo discharge model of anomalous sporadic E ionization before great earthquakes. In: Hayakawa, M., O.A. Molchanov, (Eds.), Seismo Electromagnetics: Lithosphere–Atmosphere–Ionosphere Couplings, TERRAPUB, Tokyo, pp. 385–390, 2002; Ondoh. T., Hayakawa, M. Synthetic study of precursory phenomena of the M7.2 Hyogo-ken Nanbu earthquake. Phys. Chem. Earth 31, 378–388, 2006]. The foF2 decrease and h’F increase occurred before the M7.8 Hokkaido Nansei-Oki earthquake of July 12,1993 in a geomagnetic quiet period [Ondoh, T. Ionospheric disturbances associated with great earthquake of Hokkaido southwest coast, Japan of July 12, 1993. Phys. Earth Planet. Interiors. 105, 261–269, 1998; Ondoh, T. Seismo ionospheric phenomena. Adv. Space Res. 26, 8, 1267–1272, 2000]. Characteristic phase changes at terminator times of Omega 10.2 kHz waves passing 70 km of the epicenter extended toward darker local times by 1 h for 3 days before this earthquake due to lowering of the wave reflection height or ion density increases in the D region [Hayakawa, M., Molchanov, O. A., Ondoh, T., Kawai, E. The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J. Commun. Res. La., 43, 00. 169–180, 1996]. The radon concentration in the atmosphere over Ashiya fault, Kobe [Yasuoka, Y., Shinogi, M. Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe, Japan, earthquake. Health Phys. 72(5), 759–761, 1997] and in the groundwater at 17 m well in Nishinomiya, Japan [Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaki, S., Sasaki, Y., Takahashi, M., Sano, Y. Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269, 60–61, 1995] had gradually increased since 2 months before the M7.2 earthquake, increased suddenly in December 1994, and rapidly returned to the normal low level of October, 1994 [Yasuoka, Y., Shinogi, M. 1997. Anomaly in atmospheric radon concentration: a possible precursor of the 1995 Kobe. Japan, earthquake. Health Phys. 72(5), 759–761.]. Radon concentration changes in the groundwater before the M 7.0 Izu-Oshima-kinkai earthquake, Japan on January 14, 1978 [Wakita, H., Nakamura, Y., Notsu, K., Noguchi, M., Asada, T. 1980. Radon anomaly: a possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science 207, 882–883] and the M6.8 Chengkung earthquake, Taiwan on December 10, 2003 [Kuo, T., Fan, K., Chen, W., Kuochen, H., Han, Y., Wang, C., Chang, T., Lee, Y. Radon anomaly at the Antung Hot Spring before the Taiwan M6.8 Chengkung earthquake. Proceedings, Thirty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30–February 1, 2006, SGP-TR-179, 2006] are also investigated to find common features of the groundwater radon concentration changes before large earthquakes (M > 6.5) in comparison with those before the M7.2 Hyogoken–Nanbu earthquake. Groundwater radon concentrations before the 3 large earthquakes had shown common characteristic changes of gradually initial ones from the normal level since about 2 months before the earthquake onsets, rapid decreases down to the minimum, and quick increases up to the maximum at 7–20 days before the earthquake onsets, respectively. These are very useful characteristics of pre-seismic radon anomaly for the earthquake prediction or warning. Promising observations toward the earthquake prediction are also discussed.  相似文献   

8.
The in situ validation of the satellite altimeter sea surface heights is generally performed either at a few local points directly flown over by the satellites or using the global tide gauge network. A regional in situ calibration method was developed by NOVELTIS in order to monitor the altimeter data quality in a perimeter of several hundred kilometres around a given in situ calibration site. The primary advantage of this technique is its applicability not only for missions flying over dedicated sites but also for missions on interleaved or non repetitive orbits. This article presents the altimeter bias estimates obtained with this method at the Corsican calibration site, for the Jason-1 mission on its nominal and interleaved orbits as well as for the Jason-2 and Envisat missions. The various regional bias estimates (8.2 cm and 7.4 cm for Jason-1 respectively on the nominal and interleaved orbits in Senetosa, 16.4 cm for Jason-2 in Senetosa and 47.0 cm for Envisat in Ajaccio, with an accuracy between 2.5 cm and 4 cm depending on the mission) are compared with the results obtained by the other in situ calibration teams. This comparison demonstrates the coherency at the centimetre level, the stability and the generic character of the method, which would also be of benefit to the new and future altimeter missions such as Cryosat-2, SARAL/AltiKa, Sentinel-3, Jason-3, Jason-CS.  相似文献   

9.
The first results of the comparison of subauroral luminosity dynamics in 557,7 and 630,0 nm emission with simultaneous measurements of the ionospheric drift in the F2 region with a digisonde DPS-4 at the Yakutsk meridian (CGMC: 55–60N, 200°E) at Kp = 2–6 are presented. It is shown from the analysis of individual events that during the magnetospheric convection intensification after the turn of the IMF Bz – component to the south the equatorward extension of diffuse aurora takes place. At the same time the westward ionospheric drift velocity increases both in the diffuse aurora region and much equatorward of it due to the occurrence of the northward polarization electric field. We suppose that the generation of polarization field can be associated with the development of the region 2 FAC during the intensification of magnetospheric convection. The comparison of ground-based observations with measurements of the plasma drift aboard the DMSP-F15 satellite has been carried out.  相似文献   

10.
In this paper, we analyze the footpoint motion of two large solar flares using observations made by the Transition Region and Coronal Explorer (TRACE) and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The two flares are the M5.7 flare of March 14, 2002 and the X10 flare of October 29, 2003. They are both classical two-ribbon flares as observed in TRACE 1600 or 171 Å images and have long-duration conjugate hard X-ray (HXR) footpoint emission. We use the ‘center-of-mass’ method to locate the centroids of the UV/EUV flare ribbons. The results are: (1) The conjugate UV/EUV ribbons and HXR footpoints of the two flares show a converging (inward) motion during the impulsive phase. For the two flares, the converging motion lasts about 3 and 10 min, respectively. The usual separation (outward) motion for the flare ribbons and footpoints take place only after the converging motion. (2) During the inward and the outward motion, the conjugate ribbons and footpoints of the two events exhibit a strong unshear motion. In obtaining above results, TRACE UV/EUV and RHESSI HXR data show an overall agreement. The two events demonstrate that the magnetic reconnection for the flares occurs in highly sheared magnetic field. Furthermore, the results support the magnetic model constructed by Ji et al. [Ji, H., Huang, G., Wang, H. Astrophys. J. 660, 893–900, 2007], who proposed that the contracting motion of flaring loops is the signature of the relaxation of sheared magnetic fields.  相似文献   

11.
Vertical profiles of ozone have been measured at balloon altitudes. Our purpose is to examine the character of vertical wavenumber spectra of ozone fluctuations, to assess the possible roles of gravity wave field in ozone fluctuations, and to determine dominant vertical wavelengths of ozone spectra. Vertical wavenumber spectra of 12 ozone fluctuations obtained during June–August 2003 are presented. Results indicate that mean spectral slopes in the wavenumber range from 4.69 × 10−4 to 2.50 × 10−3 cyc/m are about −2.91 in the troposphere and −2.87 in the lower stratosphere, which is close to the slope of −3 predicted by current gravity wave saturation models. The consistency of the observed spectral slopes with the value of −3 predicted by current gravity wave saturation models suggests that the observed ozone fluctuations are due primarily to atmospheric gravity waves. At m = 1/(1000 m) the mean spectral amplitude is over 30 times larger in the lower stratosphere than in the troposphere. Mean vertical wavenumber spectra in area-preserving form reveal dominant vertical wavelengths of ∼2.6 km in the troposphere and ∼2.7 km in the lower stratosphere, which is consistent with the values varying between 1.5 and 3.0 km estimated from the velocity field and temperature field at these heights.  相似文献   

12.
There are extensive reports of ionospheric disturbances before the great 2008 Wenchuan earthquake, which are possibly explained by seismogenic electric field hypotheses linked with the aerosols injected in atmosphere. This paper attempts to investigate the possible change of atmospheric aerosol optical depth (AOD) associated with this earthquake by using MODIS data from both Terra and Aqua satellites. The result shows a clear enhancement of AOD along the Longmenshan faults 7 days before the quake, which is 1 day and 4 days earlier than the reported negative and positive ionospheric disturbances, respectively, and is 1 day earlier than or quasi-synchronism with other reported atmospheric anomalies including air temperature, outgoing longwave radiation and relative humidity. Particularly, the spatial distribution of AOD enhancement is very local and it is correlated well with the active faults and surface ruptures. We suggest that this unique enhancement could be associated with the Lithosphere–Atmosphere–Ionosphere coupling process during the preparation of the Wenchuan earthquake.  相似文献   

13.
An empirical model of electron density (Ne) was constructed by using the data obtained with an impedance probe on board Japanese Hinotori satellite. The satellite was in circular orbit of the height of 600 km with the inclination of 31 degrees from February 1981 to June 1982. The constructed model gives Ne at any local time with the time resolution of 90 min and between −25 and 25 degrees in magnetic latitude with its resolution of 5 degrees in the range of F10.7 from 150 to 250 under the condition of Kp < 4. Spline interpolations are applied to the functions of day of year, geomagnetic latitude and solar local time, and linear interpolation is applied to the function of F10.7. Longitude dependence of Ne is not taken into account. Our density model can reproduce solar local time variation of electron density at 600 km altitude better than current International Reference Ionosphere (IRI2001) model which overestimates Ne in night time and underestimates Ne in day time. Our density model together with electron temperature model which has been constructed before will enable more understanding of upper ionospheric phenomenon in the equatorial region.  相似文献   

14.
Using full-disk observations obtained with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, we present variations of the solar acoustic mode frequencies caused by the solar activity cycle. High-degree (100 < ? < 900) solar acoustic modes were analyzed using global helioseismology analysis techniques over most of solar cycle 23. We followed the methodology described in details in [Korzennik, S.G., Rabello-Soares, M.C., Schou, J. On the determination of Michelson Doppler Imager high-degree mode frequencies. ApJ 602, 481–515, 2004] to infer unbiased estimates of high-degree mode parameters ([see also Rabello-Soares, M.C., Korzennik, S.G., Schou, J. High-degree mode frequencies: changes with solar cycle. ESA SP-624, 2006]). We have removed most of the known instrumental and observational effects that affect specifically high-degree modes. We show that the high-degree changes are in good agreement with the medium-degree results, except for years when the instrument was highly defocused. We analyzed and discuss the effect of defocusing on high-degree estimation. Our results for high-degree modes confirm that the frequency shift scaled by the relative mode inertia is a function of frequency and it is independent of degree.  相似文献   

15.
An improvement to the Martian gravity field may be achieved by means of future orbiting spacecraft with small eccentricity and low altitude exemplified through a newly proposed mission design that may be tested in upcoming reconnaissance of Mars. Here, the near equatorial orbital character (with an inclination approximating 10°, eccentricity as 0.01 and semi-major axis as 4000 km) is considered, and its contribution to Martian gravity field solution is analyzed by comparing it with a hypothetical polar circular orbiter. The solution models are evaluated in terms of the following viewpoints: power spectra of gravity field coefficients, correlations of low degree zonal coefficients, precise orbit determination, and error distribution of both Mars free air gravity anomaly and areoid. At the same time, the contributions of the near equatorial orbiters in low degree zonal coefficients time variations are also considered. The present results show that the near equatorial orbiter allows us to improve the accuracy of the Martian gravity field solution, decrease correlation of low degree zonal coefficients, retrieve much better time variable information of low degree zonal coefficients, improve precise orbit determination, and provide more accurate Mars free air gravity anomaly and areoid around the equatorial region.  相似文献   

16.
We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001–2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.  相似文献   

17.
卫星在轨进行磁场测绘及监测时,需要高精度的磁场值,但由于磁通门磁强计三轴非正交性以及零点漂移所引起的误差大大降低了磁强计的测量精度,因而有必要对此进行校正.本文利用绝对标量磁强计,采用一种改进的最小二乘标定算法,通过不断迭代实现对磁通门三轴正交性和零点漂移的修正.结果表明,在考虑了磁强计本身噪声水平的实际情况下,磁通门磁强计的误差可由100nT左右修正到0.2nT以内.该算法为卫星在轨高精度磁场测量提供了一种可行的方法.   相似文献   

18.
本文介绍电磁干扰测量系统的四种校准方法:比较法,标准天线法、插入损耗法和标准场法。介绍了各方法的测量原理和测量方框图。四种方法均各有其特点,可以根据需要的测量精度来选择不同的校准方法。同时,还介绍了校准场地的选择和收发天线架设的原则。  相似文献   

19.
Densities derived from accelerometer measurements on the CHAMP satellite near 400 km are used to statistically establish characteristics of large-scale (>1000 km) traveling atmospheric disturbances (TADs). Only TADs that at least propagate from the auroral zone to the equator are analyzed here, and a total of 21 identifiable events are found over the years 2001–2007. The average speed of all TADs, regardless of local time, is 646 ± 122 ms−1. The average speeds on the dayside and nightside are 595 ± 127 ms−1 and 685 ± 106 ms−1, respectively, i.e., the speed appears to be 10% higher on average on the nightside. On six occasions TADs were only detected on the night side; however, TADs on the dayside often appear more distinctly in the data. Moreover, contrary to some theoretical expectations, dayside TADs do not dissipate more readily than night side TADs, although much less are detected between 8–20 solar local time. No clear dependence of TAD amplitude or phase speed with respect to Kp, or rate of increase of Kp, is found.  相似文献   

20.
By applying the cross-phase method and the amplitude-ratio method to magnetic field data obtained from two ground stations located close to each other, we can determine the frequency of the field line resonance (FLR), or the field line eigenfrequency, for the field line running through the midpoint of the two stations. From thus identified FLR frequency we can estimate the equatorial plasma mass density (ρ)(ρ) by using the T05s magnetospheric field model [Tsyganenko, N.A., Sitnov, M.I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res. 110, A03208, 2005] and the equation of Singer et al. [Singer, H.J., Southwood, D.J., Walker, R.J., Kivelson, M.G. Alfven wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res. 86 (A6) 4589–4596, 1981].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号