共查询到11条相似文献,搜索用时 0 毫秒
1.
G. Stober Ch. Jacobi K. Fröhlich J. Oberheide 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The method of obtaining absolute temperature estimates by measuring the ambipolar diffusion coefficient with meteor radars in the mesopause region is basically well known. However, there is still a need to refine and adjust the background temperature gradient model which is necessary to calculate the temperature values. Therefore, a detailed comparison with independent temperature measurements is necessary to evaluate the performance of the method and to obtain more information about the temperature gradient. Recent studies provide some evidence that the impact of the gradient model on temperature estimates affects the absolute temperatures, but that it is of minor importance for wave analysis. This paper focuses on a detailed evaluation of the meteor radar temperatures by comparing them with SABER satellite and OH-emission mesopause region temperatures. The seasonal variation of the observed temperatures is well reproduced by the COMMA general circulation model. 相似文献
2.
Fabio Vargas 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(2):967-985
Measurements of dynamic parameters of atmospheric gravity waves, mainly the vertical wavelength, the momentum flux and the momentum flux divergence, are affected by large uncertainties crudely documented in the scientific literature. By using methods of error analysis, we have quantified these uncertainties for frequently observed temporal and spatial wave scales. The results show uncertainties of ~10%, ~35%, and ~65%, at least, in the vertical wavelength, momentum flux, and flux divergence, respectively. The large uncertainties in the momentum flux and flux divergence are dominated by uncertainties in the Brunt-Väisälä frequency and in spatial separation of the nightglow layers, respectively. The measured uncertainties in fundamental wave parameters such as the wave amplitude, intrinsic period, horizontal wavelength, and wave orientation are ~10% or less and estimated directly from our nightglow image data set. Other key environmental quantities such as the scale height and the Brunt-Väisälä frequency, frequently considered as constants in gravity wave parameter estimations schemes, are actually quite variable, presenting uncertainties of ~4% and ~9%, respectively, according to the several solar activity and seasonal atmosphere scenarios from the NRLMSISE-00 model simulated here. 相似文献
3.
Barclay Clemesha Dale SimonichPaulo Batista 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
A sodium lidar, capable of measuring temperature in the 80–100 km region, has been in operation at São José dos Campos (23° S, 46 W) since March 2007. Good quality data have been obtained for late autumn, winter and spring, but weather conditions make it extremely difficult to make measurements from mid-November to mid- February. We find the temperature structure to be strongly modulated by tides and gravity waves, but average profiles typically show a primary mesopause height close to 100 km with temperatures around 180 K, and a tendency for a secondary minimum of about 185 K to occur close to 90 km. Vertical temperature gradients greater than 50 K/km are sometimes seen even on profiles averaged over several hours. The strongest gradients are always positive and are frequently associated with strong gradients in sodium concentration. On the other hand, we frequently see rapid changes in the temperature profile, suggesting that models and non-local temperature measurements, as made by satellite radiometers, for example, are of little use in applications such as the analysis of gravity wave propagation seen in airglow images. 相似文献
4.
Esteban R. Reisin Jürgen Scheer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Airglow intensities and rotational temperatures of the OH(6-2) and O2b(0-1) bands acquired at El Leoncito (32°S, 69°W) provide good annual coverage in 1998–2002, 2006, and 2007, with between 192 and 311 nights of observation per year. These data can therefore be used to derive the seasonal variations during each of these seven years, in airglow brightness and temperatures at altitudes of 87 and 95 km. From 1998 to 2001, seasonal variations are similar enough so that they can be well represented by a mean climatology, for each parameter. On the other hand, these climatologies do not agree with what is usually observed at other sites, maybe due to the particular orographic conditions at El Leoncito. With respect to the last three fully documented years (2002, 2006, and 2007), the similarity from year to year deteriorates, and there are greater differences in the seasonal behaviour, more or less in all the parameters. The differences include, e.g., maxima occurring earlier or later than “normal”, by one or two months. All this may suggest the build-up of a new regime of intraseasonal variability, with a possible relationship to corresponding changes in wave activity. 相似文献
5.
P.K. Bhuyan K. Bhuyan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Electron density measured by the Indian satellite SROSS C2 at the altitude of ∼500 km in the 75°E longitude sector for the ascending half of the solar cycle 22 from 1995 to 1999 are used to study the position and density of the equatorial ionization anomaly (EIA). Results show that the latitudinal position and peak electron density of the EIA crest and crest to trough ratios of the anomaly during the 10:00–14:00 LT period vary with season and from one year to another. Both EIA crest position and density are found to be asymmetric about the magnetic equator and the asymmetry depends on season as well as the year of observation, i.e., solar activity. The latitudinal position of the crest of the EIA and the crest density bears good positive correlation with F10.7 and the strength of the equatorial electrojet (EEJ). 相似文献
6.
M.J. Smith 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(1):25-28
In the 95km height region of the atmosphere, ground-based techniques made an important contribution to the CIRA 72 [1] wind model. Recent wind measurements from a partial reflection experiment at 44S covering one and a half years are presented and compared with CIRA 72. The zonal wind component compares favourably, although the measured values are more easterly above 80km in autumn and winter; a feature of the autumn winds is a temporary easterly reversal above 90km. Winter mesospheric winds can be very disturbed. The summer mesosphere easterly maximum appears earlier in the season and at a higher altitude than the model. A much poorer comparison is shown between the measured meridional wind component and the 1969 model of Groves [2]. 相似文献
7.
Linfeng Huang Jinsong Wang Yong Jiang Jiang Huang Zhou Chen Kai Zhao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The diurnal variations in total electron content (TEC) in the equatorial ionisation anomaly (EIA) region are not always represented by two crests on both sides of the magnetic equator. Sometimes, only an obvious single crest is evident at equatorial and low latitudes. In this paper, we focus on analysis of the morphological features of the single crest phenomenon in TEC around 120°E longitude during geomagnetic quiet days (Kp < 4−). The variations in TEC are also compared with morphological parameters (foF2 and hmF2) derived from the International Reference Ionosphere extended to Plasmasphere (IRI–Plas) model. Our results show that the single crest phenomenon occurs mainly on days with extremely low solar activity, while the corresponding F2 layer critical frequency showed obvious asymmetry, or even only a single peak. 相似文献
8.
Anabel Alejandra Lamaro Alejandro Mariñelarena Sandra Edith Torrusio Silvia Estela Sala 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Monitoring of warm distribution in water is fundamental to understand the performance and functioning of reservoirs and lakes. Surface water temperature is a key parameter in the physics of aquatic systems processes since it is closely related to the energy fluxes through the water–atmosphere interface. Remote sensing applied to water quality studies in inland waterbodies is a powerful tool that can provide additional information difficult to achieve by other means. The combination of good real-time coverage, spatial resolution and free availability of data makes Landsat system a proper alternative. Many papers have developed algorithms to retrieve surface temperature (principally, land surface temperature) from at-sensor and surface emissivity data. The aim of this study is to apply the single-channel generalized method (SCGM) developed by Jiménez-Muñoz and Sobrino (2003) for the estimation of water surface temperature from Landsat 7 ETM+ thermal bands. We consider a constant water emissivity value (0.9885) and we compare the results with radiative transfer classic method (RTM). 相似文献
9.
M.-L. Zhang W. Wan L. Liu J.K. Shi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
In this paper, data of (B0, B1) parameters deduced from the electron density profiles that are inverted from the ionograms recorded at Hainan (19.4°N, 109.0°E), China during a three year period from March 2002 to February 2005 are used to study the diurnal and seasonal variation of (B0, B1) parameters at low latitude. The observational results are compared with the IRI2001 model predictions. Variability study of (B0, B1) in terms of percentage ratio of the inter-quartiles to the median values and correlative analysis between (B0, B1) parameters and other ionospheric characteristics such as hmF2 and M(3000)F2 are also made. Our present study showed that: (1) for daytime hours, the IRI2001 model results with new table option (B0_Tab) is in a better agreement with the observational results (B0_Obs) than the IRI2001 model results with Gulyaeva option (B0_Gul) for summer season, whereas B0_Gul is in a better agreement with B0_Obs than B0_Tab for winter season. For nighttime, in general, B0_Gul is in a better agreement with B0_Obs than B0_Tab. For other occasions, both B0_Tab and B0_Gul showed some systematic deviations from the observational ones. Moreover, the deviations of B0_Tab and B0_Gul from B0_Obs showed opposite trends; (2) the monthly upper (lower) quartiles of (B0, B1) parameter showed a good linear relationship with the monthly median values, this makes it possible to do the regression analysis between the monthly upper (lower) quartiles and the monthly median values, which can give a measure of the variability of these parameters. In terms of the percentage ratio of the inter-quartiles to the median values, the variability of B0 showed a diurnal variation ranging between 22% and 36% with maximum value occurring at pre-sunrise hours, whereas the variability of B1 showed a diurnal variation ranging between 15% and 30% with higher value by daytime than at night; (3) B0 shows high linear correlative relationships with hmF2 and M(3000)F2 for most of the local time period of a day except for a few hours around midnight, whereas B1 showed high linear correlations with B0, hmF2 for daytime hours, but not for nighttime hours. This suggests that it maybe is possible to obtain the synthetic database of (B0, B1) parameter or to construct the model of (B0, B1) using database of hmF2 or M(3000)F2 which is much easier to obtain from experimental measurements. 相似文献
10.
S. Carbone L.F. Padilha M.B. Rosa D.K. Pinheiro N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(12):2178-II
The first estimations of the aerosol optical thickness (AOT) using Langley Method at Southern Space Observatory (SSO) at Southern Brazil (29.4°S, 53.8°W) are presented. In addition to ozone and sulphur dioxide columns, AOT can be obtained using Brewer Spectrophotometer at specific wavelengths: 306.3, 310.1, 313.5, 316.8 and 320.1 nm. The AOT was obtained for the period from November/2002 to May/2003. Very low AOT averages were obtained, whose values were about 0.21 ± 0.03 at 306.3 nm, 0.21 ± 0.02 at 310.1 nm, 0.19 ± 0.02 at 313.5 nm, 0.20 ± 0.02 at 316.8 nm and 0.20 ± 0.02 at 320.0 nm for all period analysed. Different behaviour of AOT were obtained at two daily specific periods of aerosol accumulation, one in the afternoons from November/2002 to February/2003, caused mainly by a mild biomass burning season’s in the region and other in the mornings from March to May/2003, due the high relative humidity presented in the region studied. 相似文献
11.
M. Cabane P. Coll C. Szopa G. Israël F. Raulin R. Sternberg P. Mahaffy A. Person C. Rodier R. Navarro-Gonzlez H. Niemann D. Harpold W. Brinckerhoff 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(12):2240-2245
Observation of Mars shows signs of a past Earth-like climate, and, in that case, there is no objection to the possible development of life, in the underground or at the surface, as in the terrestrial primitive biosphere. Sample analysis at Mars (SAM) is an experiment which may be proposed for atmospheric, ground and underground in situ measurements. One of its goals is to bring direct or indirect information on the possibility for life to have developed on Mars, and to detect traces of past or present biological activity. With this aim, it focuses on the detection of organic molecules: volatile organics are extracted from the sample by simple heating, whereas refractory molecules are made analyzable (i.e. volatile), using derivatization technique or fragmentation by pyrolysis. Gaseous mixtures thus obtained are analyzed by gas chromatography associated to mass spectrometry. Beyond organics, carbonates and other salts are associated to the dense and moist atmosphere necessary to the development of life, and might have formed and accumulated in some places on Mars. They represent another target for SAM. Heating of the samples allows the analysis of structural gases of these minerals (CO2 from carbonates, etc.), enabling to identify them. We also show, in this paper, that it may be possible to discriminate between abiotic minerals, and minerals (shells, etc.) created by living organisms. 相似文献