首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper gives an overview on the fields of debris research performed at the TUBS. The orbital debris flux of all objects larger than 1cm has been established and simulated by a mathematical model in the past mainly on the basis of simulating explosion fragments. However the flux in the millimeter and submillimeter size range seems to be largely influenced by collisions and their ejecta on high circular or on eccentric orbits. The angular distribution of the impact flux on targets at various altitudes and on various inclinations are presented. This angular distribution has also influence on the surface impact flux on a space station, where also the self shielding has to be considered. Results for the ISS are presented. The risk of impacts of larger not shieldable objects on a space station may become too high, so that collision avoidance manoeuvres must be envisaged, the feasibility of which using onboard detectors is discussed.  相似文献   

2.
Parallelism is becoming the leading paradigm in today’s computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously.  相似文献   

3.
综述了国内外复合固体推进剂静态燃速的测试方法及其新发展,介绍了有关静态燃速测定装置的工作原理,对所采用的不同测定装置和测试方法作了比较,并作了简要的评价。  相似文献   

4.
This paper provides a hamiltonian formulation of the equations of motion of an artificial satellite or space debris orbiting the geostationary ring. This theory of order 1 has been formulated using canonical and non-singular elements for eccentricity and inclination. The analysis is based on an expansion in powers of the eccentricity and of the inclination. The theory accounts for the influence of the Earth gravity field expanded in spherical harmonics, paying a particular attention to the resonance occurring for geosynchronous objects. The luni-solar perturbations are also taken into account. We present the resonant motion and its main characteristics: equilibria, stability, fundamental frequencies and width of the resonant area by comparison with a basic analytical model. Finally, we show some results concerning the long term dynamics of a typical space debris under the influence of the gravitational field of the Earth and the luni-solar interactions.  相似文献   

5.
In reviewing discussions of future directions for space activity, it becomes obvious that there are a large number of groups formulating a wide diversity of plans for the future use of space. These plan alternatives are being made to account for user needs, technology development constraints, economic constraints, and launch support, and each of the plans will have direct or indirect effects on the orbital debris environment in terms of mass to orbit, deposition of operational debris, and control of accidental breakups. Thus it is important to develop the ability to project future debris states for a range of possible space traffic scenarios. The impact that these possible traffic environments would have on space operations forms the basis for studies of alternative options for the usage of space. In this paper, the effects on the orbital debris environment of a base-line mission model and two alternatives are investigated, using a numerical debris environment simulation code under development at JSC.  相似文献   

6.
Material density is an important, yet often overlooked, property of orbital debris particles. Many models simply use a typical density to represent all breakup fragments. While adequate for modeling average characteristics in some applications, a single value material density may not be sufficient for reliable impact damage assessments. In an attempt to improve the next-generation NASA Orbital Debris Engineering Model, a study on the material density distribution of the breakup fragments has been conducted and summarized in this paper.  相似文献   

7.
An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities.  相似文献   

8.
9.
10.
Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object’s physical properties lead to different attitude states and their change over time.Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB’s light curve database and the obtained rotation properties of space debris as a function of object type and orbit.  相似文献   

11.
The MéO (for Métrologie Optique) telescope is the Satellite and Lunar Laser Ranging (SLR) dedicated telescope of Observatoire de la Côte d’Azur (France) located at plateau de Calern. The telescope uses an altazimuth mount. The motorization of the mount has a capability of 6 deg/s allowing the follow up of Low Earth Orbits (LEO) satellites, as well as Medium Earth Orbits (MEO) and geostationary (GEO) satellites, and the Moon. The telescope has a primary mirror of 1.54 m. It uses a Nasmyth focus equipped with an EMCCD camera. The telescope field of view, defined by the equivalent focal length and the size of the camera, is currently 3.4 arcmin × 3.4 arcmin.  相似文献   

12.
In the framework of its space debris research activities ESA established an optical survey program to study the space debris environment at high altitudes, in particular in the geostationary ring and in the geostationary transfer orbit region. The Astronomical Institute of the University of Bern (AIUB) performs these surveys on behalf of ESA using ESA’s 1-m telescope in Tenerife. Regular observations were started in 1999 and are continued during about 120–140 nights per year. Results from these surveys revealed a substantial amount of space debris at high altitudes in the size range from 0.1 to 1 m. Several space debris populations with different dynamical properties were identified in the geostationary ring. During the searches for debris in the geostationary transfer orbit region a new population of objects in unexpected orbits, where no potential progenitors exist, was found. The orbital periods of these objects are clustered around one revolution per day; the eccentricities, however, are scattered between 0 and 0.6. By following-up some of these objects using the ESA telescope and AIUB’s 1-m telescope in Zimmerwald, Switzerland, it was possible to study the properties of this new population. One spectacular finding from monitoring the orbits over time spans of days to months is the fact that these objects must have extreme area-to-mass ratios, which are by several orders of magnitudes higher than for ‘normal-type’ debris. This in turn supports the hypothesis that the new population actually is debris generated in or near the geostationary ring and which is in orbits with periodically varying eccentricity and inclination due to perturbations by solar radiation pressure. In order to further study the nature of these debris, multi-color and temporal photometry (light curves) were acquired with the Zimmerwald telescope. The light curves show strong variations over short time intervals, including signals typical for specular reflections. Some objects exhibit distinct periodic variations with periods ranging from 10 to several 100 s. All this is indicative for objects with complicated shapes and some highly reflective surfaces.  相似文献   

13.
The increase in space debris can seriously threaten regular activities in the Low Earth Orbit (LEO) environment. Therefore, it is necessary to develop robust, efficient and reliable techniques to understand the potential motions of the LEO debris. In this paper, we propose a novel signal processing approach to detect and estimate the motions of LEO space debris that is based on a fence-type space surveillance radar system. Because of the sparse distribution of the orbiting debris through the fence in our observations, we formulate the signal detection and the motion parameter estimation as a sparse signal reconstruction problem with respect to an over-complete dictionary. Moreover, we propose a new scheme to reduce the size of the original over-complete dictionary without the loss of the important information. This new scheme is based on a careful analysis of the relations between the acceleration and the directions of arrival for the corresponding LEO space debris. Our simulation results show that the proposed approach can achieve extremely good performance in terms of the accuracy for detection and estimation. Furthermore, our simulation results demonstrate the robustness of the approach in scenarios with a low Signal-to-Noise Ratio (SNR) and the super-resolution properties. We hope our signal processing approach can stimulate further work on monitoring LEO space debris.  相似文献   

14.
Numerous studies have indicated that the microgravity environment of space has harmful effects on several tissues throughout the body. Although this phenomenon is well documented, research in this area is still in its relative infancy. This study investigates the effects of space flight on mucin production of the uterine tubes of mice. This study examined the epithelium of the uterine tubes from female mice that were flown on the space shuttle Endeavour for 13 days in August, 2007 and their concomitant controls. The tissue was qualitatively analyzed for the type of mucin produced, i.e., acidic, neutral, acidic/neutral mixture. Further, the tissue was quantitatively analyzed for the amounts of mucins produced by measuring the thickness of the mucin layer for each region of the uterine tube: isthmus, ampulla, and infundibulum. One way ANOVA tests were used to compare mucin thickness between all three sets of animals. Results indicate similar but not identical results between the three regions of the uterine tube. The Baseline tissue had the thickest mucin layer regardless of treatment group. In the ampulla the mucin layer was the thinnest in the Flight tissue, followed by the Ground Control, with the Baseline being the thickest. Analysis of the mucin layer of the infundibulum of the three treatment groups indicated no difference in its thickness between the three regions of the uterine tube. These results indicate a trend toward thinning of the mucin layer of the uterine tube in space flight, but also indicate an influence by the housing environment.  相似文献   

15.
Since 2004, we observe satellites in the geostationary orbit with a network of robotic ground based fully automated telescopes called TAROT. One of them is located in France and the second at ESO, La Silla, Chile. The system processes the data in real time. Its wide field of view is useful for the discovery, the systematic survey and for the tracking of both catalogued and un-catalogued objects. We present a new source extraction algorithm based on morphological mathematic, which has been tested and is currently under implementation in the standard pipeline. Using this method, the observation strategy will correlate the measurements of the same object on successive images and give better detection rate and false alarm rate than the previous one. The overall efficiency and quality of the survey of the geostationary orbit has drastically improved and we can now detect satellites and debris in different orbits like Geostationary Transfer Orbit (GTO). Results obtained in real conditions with TAROT are presented.  相似文献   

16.
The Russian microsatellite “Universitetskiy-Tatiana” was launched on Jan. 20, 2005 and was both a scientific and educational mission. Its two main aims were declared as: (1) monitoring of the energetic particles dynamics in the near-Earth space environment after solar events and during quiet times, (2) educational activities based on experimental data obtained from the spacecraft. In this paper observations acquired during Dec. 5–16, 2006, known as “Solar Extreme Events 2006”, were analyzed. The “Universitetskiy-Tatiana” microsatellite orbit permits one to measure both solar energetic particle dynamics, variations of the boundary of solar particle penetration, as well as relativistic and sub-relativistic electrons of the Earth’s outer radiation belt during and after magnetic storms. Both relativistic electrons of the Earth’s outer radiation and solar energetic particles are an important source of radiation damage in near-Earth space. Therefore, the presented experimental results demonstrate the successful application of a small educational spacecraft both for scientific and educational programs.  相似文献   

17.
Calculations to predict the radiation environment for spacecraft in low earth orbit sometimes ignore the contribution from secondary radiation products. However, the contribution of secondaries, particularly neutrons, on heavy spacecraft or in planetary bodies can be of concern for biological systems. The Shuttle Activation Monitor (SAM) and Cosmic Radiation Effects and Activation Monitor (CREAM) experiments provide valuable data on secondary (as well as primary) radiation effects. Comparisons have been made between induced activity from flight-exposed samples, induced activity in a ground-irradiated sample, and Monte Carlo-derived predictions with and without secondaries. These comparisons show that for a flight-exposed sample, predictions which omit the secondary contribution result in a spectrum that is too low by a factor of 2. The addition of the secondaries results in a predicted spectrum that closely matches the measured data.  相似文献   

18.
Institute of Experimental Meteorology initiated investigations of anthropogenic contamination (AC) and its influence on the near-earth environment and orbiting vehicles. These investigations are based on rocket experiments on simulation of the effects of gas-dust fluxes at the rate of 7–8 km/s on vehicle optical elements under real space conditions. The fluxes are generated by rocket-borne explosive generators.  相似文献   

19.
Optical survey is a main technique for observing space debris, and precisely measuring the positions of space debris is of great importance. Due to several factors, e.g. the angle object normal to the observer, the shape as well as the attitude of the object, the variations of observed characteristics for low earth orbital space debris are distinct. When we look at optical CCD images of observed objects, the size and brightness are varying, hence it’s difficult to decide the threshold during centroid measurement and precise astrometry. Traditionally the threshold is given empirically and constantly in data reduction, and obviously it’s not suitable for data reduction of space debris. Here we offer a solution to provide the threshold. Our method assumes that the PSF (point spread function) is Gaussian and estimates the signal flux by a directly two-dimensional Gaussian fit, then a cubic spline interpolation is performed to divide each initial pixel into several sub-pixels, at last the threshold is determined by the estimation of signal flux and the sub-pixels above threshold are separated to estimate the centroid. A trail observation of the fast spinning satellite Ajisai is made and the CCD frames are obtained to test our algorithm. The calibration precision of various threshold is obtained through the comparison between the observed equatorial position and the reference one, the latter are obtained from the precise ephemeris of the satellite. The results indicate that our method reduces the total errors of measurements, it works effectively in improving the centering precision of space debris images.  相似文献   

20.
In this work, we present a symplectic integration scheme to numerically compute space debris motion. Such an integrator is particularly suitable to obtain reliable trajectories of objects lying on high orbits, especially geostationary ones. Indeed, it has already been demonstrated that such objects could stay there for hundreds of years. Our model takes into account the Earth’s gravitational potential, luni-solar and planetary gravitational perturbations and direct solar radiation pressure. Based on the analysis of the energy conservation and on a comparison with a high order non-symplectic integrator, we show that our algorithm allows us to use large time steps and keep accurate results. We also propose an innovative method to model Earth’s shadow crossings by means of a smooth shadow function. In the particular framework of symplectic integration, such a function needs to be included analytically in the equations of motion in order to prevent numerical drifts of the energy. For the sake of completeness, both cylindrical shadows and penumbra transitions models are considered. We show that both models are not equivalent and that big discrepancies actually appear between associated orbits, especially for high area-to-mass ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号