首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper we present results assessing the role of Very Long Baseline Interferometry (VLBI) tracking data through precision orbit determination (POD) during the check-out phase for Chang’E-1, and the lunar gravity field solution CEGM-01 based on the orbital tracking data acquired during the nominal phase of the mission. The POD of Chang’E-1 is performed using S-band two-way Range and Range Rate (R&RR) data, together with VLBI delay and delay rate observations. The role of the VLBI data in the POD of Chang’E-1 is analyzed, and the resulting orbital accuracies are estimated for different solution strategies. The final orbital accuracies proved that the VLBI tracking data can improve the Chang’E-1 POD significantly. Consequently, CEGM-01 based on six-month tracking data during Chang’E-1 nominal mission phase is presented, and the accuracy of the model is assessed by means of the gravity field power spectrum, admittance and coherence between gravity and topography, lunar surface gravity anomaly and POD for both Chang’E-1 and Lunar Prospector (LP). Our analysis indicates that CEGM-01 has significant improvements over a prior model (i.e. GLGM-2), and shows the potential of Chang’E-1 tracking data in high resolution lunar gravity field model solution by combining with SELENE and LP tracking data.  相似文献   

2.
High accuracy differenced phase delay can be obtained by observing multiple point frequencies of two spacecraft using the same beam Very Long Baseline Interferometry (VLBI) technology. Its contribution in lunar spacecraft precision orbit determination has been performed during the Japanese lunar exploration mission SELENE. In consideration that there will be an orbiter and a return capsule flying around the moon during the Chinese lunar exploration future mission Chang’E-3, the contributions of the same beam VLBI in spacecraft precision orbit determination and lunar gravity field solution have been investigated. Our results show that the accuracy of precision orbit determination can be improved more than one order of magnitude after including the same beam VLBI measurements. There are significant improvements in accuracy of low and medium degree coefficients of lunar gravity field model obtained from combination of two way range and Doppler and the same beam VLBI measurements than the one that only uses two way range and Doppler data, and the accuracy of precision orbit determination can reach meter level.  相似文献   

3.
We analyzed the 150 × 150 lunar gravity field models, LP150Q, GLGM-3 and SGM150, using the power spectrum on the lunar nearside and farside, the lunar global and localized gravity/topography admittance and correlation, and Chang’E-2 precision orbit determination to investigate which model is a more effective tool to estimate geophysical parameters and determine the lunar satellite precision orbit. Results indicate that all gravity field models can be used to estimate the lunar geophysical parameters of the nearside of the Moon. However, SGM150 is better in such computation of the farside. Additionally, SGM150 is shown to be the most useful model for determining the lunar satellite orbit.  相似文献   

4.
The Japanese lunar mission SELENE: Science goals and present status   总被引:1,自引:0,他引:1  
The Japanese lunar mission SELENE (SELenological and ENgineering Explorer) has been in development to target launch scheduled 2007 summer by H-IIA rocket. The SELENE is starting final integration test after SAR (System Acceptance Review), SRR (System Reliability Review) and instrument environment test. The SELENE is a remote-sensing mission orbiting 100 km altitude of the Moon for nominal one year and extended some months to collect the data for studying the origin and evolution of the Moon. Fourteen instruments and experiment systems are preparing for studies of the Moon, in the Moon, and from the Moon; global element and mineral compositions, topological structure, gravity field of whole moon, and electromagnetic and particle environment of the Moon. The new data center SOAC (SELENE Operation and data Analysis Center) are completed to construct in JAXA Sagamihara campus, and end-to-end test will be carried out between SOAC and data downlink stations.  相似文献   

5.
The moon has longstanding questions such as lunar environments, origin, formation and evolution, magnetization of crustal rocks, internal structure and possible life. The recent lunar missions, e.g., SELenological and ENgineering Explorer “KAGUYA” (SELENE), Chang’E-1, Chandrayaan-1, and Lunar Reconnaissance Orbiter/Lunar CRater Observation and Sensing Satellite (LRO/LCROSS), have provided new opportunities to explore and understand these issues. In this paper, we reviewed and presented the results and findings in the fields of lunar gravity, magnetic field, atmosphere, surface geomorphology and compositional variations, volcano, craters, internal structure, water and life science from new lunar exploration missions. In addition, the new objectives and scientific questions on lunar explorations in near future are presented and discussed.  相似文献   

6.
A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1 mGal at a spatial resolution of 50 km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28 km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system.  相似文献   

7.
Results of numerical simulations are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (SELenological and ENgineering Explorer) which will be launched in 2007. New characteristics of the SELENE lunar gravimetry include 4-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that the proposed satellite constellation will provide the first truly global satellite tracking data coverage. The expected results from these data are; (1) drastic reduction in far-side gravity error, (2) estimation of many gravity coefficients by the observation, not by a priori information, and (3) one order of magnitude improvement over existing gravity models for low-degree field.  相似文献   

8.
Influence of lunar topography on simulated surface temperature   总被引:2,自引:0,他引:2  
The surface temperature of the Moon is one of the essential parameters for the lunar exploration, especially to evaluate the Moon thermophysical features. The distribution of the temperature is heavily influenced by the Moon topography, which, however, is rarely studied in the state-of-art surface temperature models. Therefore, this paper takes the Moon topography into account to improve the surface temperature model, Racca model. The main parameters, such as slopes along the longitude and latitude directions, are estimated with the topography data from Chang’E-1 satellite and the Horn algorithm. Then the effective solar illumination model is then constructed with the slopes and the relative position to the subsolar point. Finally, the temperature distribution over the Moon surface is obtained with the effective illumination model and the improved Racca model. The results indicate that the distribution of the temperature is very sensitive to the fluctuation of the Moon surface. The change of the surface temperature is up to 150 K in some places compared to the result without considering the topography. In addition, the variation of the surface temperature increases with the distance from the subsolar point and the elevation, along both latitude and longitude directions. Furthermore, the simulated surface temperature coincides well with the brightness temperature in 37 GHz observed by the microwave sounder onboard Chang’E-2 satellite. The corresponded emissivity map not only eliminates the influence of the topography, but also hints the inherent properties of the lunar regolith just below the surface. Last but not the least, the distribution of the permanently shadowed regions (PSRs) in the lunar pole area is also evaluated with the simulated surface temperature result.  相似文献   

9.
Lunar gravimetry mission in the Japanese lunar exploration project SELENE (Selenological and Engineering Explorer) is characterized by inter-satellite tracking by means of a relay satellite in a high eccentric orbit, combined with differential Very-Long-Baseline-Interferometry (ΔVLBI) and conventional 2-way Doppler tracking. ΔVLBI provides information on the satellite position and velocity complementary to conventional range and range rate measurement, and allows us to measure lunar gravitational accelerations in all the three components. In this article, ΔVLBI and 2-way Doppler numerical simulation results are compared to those obtained from 2-way Doppler observations only, so that we can evaluate the contribution of ΔVLBI to the SELENE lunar gravimetry mission.  相似文献   

10.
Gamma-ray spectrometer (GRS) is included in the payload of Chinese first lunar mission Chang’E-1 that will be launched in 2007. Specific objectives of the GRS are to map abundance of O, Si, Fe, Ti, U, Th, K, and perhaps, Mg, Al, and Ca to depths of about 20 cm. There are remarkable advantages for GRS application to remote sensing elemental materials over the entire lunar surface: large effective area and good ability for background rejection. We will describe the design of GRS and present its performance in this paper. Moreover, the GRS calibration will also be introduced.  相似文献   

11.
Eight lunar areas, each ∼200 km in diameter, are identified as targets for coordinated science and instrument calibration for the orbital missions soon to be flown. Instrument teams from SELENE, Chang’E, Chandrayaan-1, and LRO are encouraged to participate in a coordinated activity of early-release data that will improve calibration and validation of data across independent and diverse instruments. The targets are representative of important lunar terrains and geologic processes and thus will also provide a broad introduction to lunar science for new investigators. We briefly identify additional cross-calibration issues for instruments that produce time series data rather than maps.  相似文献   

12.
Chang’E-2 (CE-2) has firstly successfully achieved the exploring mission from lunar orbit to Sun–Earth L2 region. In this paper, we discuss the design problem of transfer trajectory and at the same time analyze the visible segment of Tracking, Telemetry & Control (TT&C) system for this mission. Firstly, the four-body problem of Sun–Earth–Moon and Spacecraft can be decoupled in two different three-body problems (Sun–Earth + Moon Restricted Three-Body Problems (RTBPs) and Earth–Moon ephemeris model). Then, the transfer trajectory segments in different model are computed, respectively, and patched by Poincaré sections. The full-flight trajectory including transfer trajectory from lunar orbit to Sun–Earth L2 region and target Lissajous orbit is obtained by the differential correction method. Finally, the visibility of TT&C system at the key time is analyzed. Actual execution of CE-2 extended mission shows that the trajectory design of CE-2 mission is feasible.  相似文献   

13.
The SELENE Laser Altimeter (LALT) is designed to map the Moon’s topography and will be launched in summer 2007. LALT incorporates Q-switched Cr doped Nd:YAG laser (1064 nm) with an output energy of 100 mJ and 1 Hz repetition frequency for about one year mission period. The laser pulse travels to the Moon’s surface and reflections from the surface are detected by a silicon avalanche photo-diode. The ranging distance is 50–150 km with about 5 m accuracy. Several corrections for accurate ranging data are investigated. The flight hardware has been qualified and passed all the integration tests. A principal goal of the LALT instrument is to obtain a much more detailed lunar topographic map which is superior in global coverage, measurement accuracy and number of data points to previous observations and models. The overall science objectives of LALT are (1) determination of lunar global figure, (2) internal structure and surface processes, (3) exploration of the lunar pole regions, and (4) reduction of lunar occultation data.  相似文献   

14.
Since 1960s, the gravitational potential of the Moon has been extensively studied from Doppler tracking data between a ground station and spacecraft orbiting in front of the Moon (e. g., Lorell and Sjogren, 1968; Bills and Ferrari, 1980; Konopliv et al., 1993; Lemoine et al., 1997). Because direct radio communication is interrupted while spacecraft is orbiting behind the Moon, however, the coverage of tracking data has been limited mostly to the nearside of the Moon so far. In order to compensate for such lack of tracking data, we propose satellite-to-satellite Doppler measurement by using a relay subsatellite in Japanese mission to the Moon in 2003. A complete coverage of Doppler tracking from an orbiter at sufficiently low altitude will significantly improve lunar gravity model and will contribute for future geophysical study of interior and tectonics on the Moon. Further, we propose differential VLBI experiment between the subsatellite and a propulsion module landed on the surface of the Moon. The differential VLBI is about 10 times more accurate than conventional Doppler measurement for long-wavelength gravity field. Besides, differential VLBI is sensitive to the displacement perpendicular to the line of sight. Thus the VLBI experiment provides precise estimates of the lunar gravity potential at low degree. The last proposal for selenodetic experiments is a laser altimeter. Global topography model has been already developed from the analysis of Clementine LIDAR data (Zuber et al., 1994), but it is suggested that the model includes appreciable anisotropy between NS and E-W directions due to highly eccentric orbit of Clementine spacecraft (Bills and Lemoine, 1995). The laser altimeter experiment from an orbiter in nearly circular orbit will provide a new reference for the isotropic lunar topography model.  相似文献   

15.
The high precision gamma-ray spectrometer (GRS) is scheduled to be launched on the lunar polar orbiter of the SELENE mission in 2007. The GRS consists of a large Ge crystal as a main detector and massive bismuth germanate crystals as an anticoincidence detector. A Stirling cryocooler was adopted in cooling the Ge detector. The flight model of SELENE GRS has been completed and an energy resolution of 3.0 keV (FWHM) at 1.332 MeV has been achieved. The spectrometer aims to observe nuclear line gamma rays emitted from the lunar surface in a wide energy range from 100 keV to 12 MeV for one year and more to obtain chemical composition on the entire lunar surface. The gamma-ray data enable us to study lunar geoscience problems including crust and mantle composition, and volatile reservoirs at polar regions.  相似文献   

16.
Lunar soil simulant is a geochemical reproduction of lunar regolith, and is needed for lunar science and engineering researches. This paper describes a new lunar soil simulant, CAS-1, prepared by the Chinese Academy of Sciences, to support lunar orbiter, soft-landing mission and sample return missions of China’s Lunar Exploration Program, which is scheduled for 2004–2020. Such simulants should match the samples returned from the Moon, all collected from the lunar regolith rather than outcrops. The average mineral and chemical composition of lunar soil sample returned from the Apollo 14 mission, which landed on the Fra Mauro Formation, is chosen as the model for the CAS-1 simulant. Source material for this simulant was a low-Ti basaltic scoria dated at 1600 years from the late Quaternary volcanic area in the Changbai Mountains of northeast China. The main minerals of this rock are pyroxene, olivine, and minor plagioclase, and about 20–40% modal glass. The scoria was analyzed by XRF and found to be chemically similar to Apollo 14 lunar sample 14163. It was crushed in an impact mill with a resulting median particle size 85.9 μm, similar to Apollo soils. Bulk density, shear resistance, complex permittivity, and reflectance spectra were also similar to Apollo 14 soil. We conclude that CAS-1 is an ideal lunar soil simulant for science and engineering research of future lunar exploration program.  相似文献   

17.
This paper summarizes and provides a critical analysis of the historical developments of lunar gravitational models from the earliest use of ground based tracking systems of the Lunar Orbiter to the Lunar Prospector mission. This encompasses a comprehensive and critical analysis of the various methods used in the estimation of the gravity coefficients and the processing of large batches of diverse measurements and data types. It has been shown that weakness exists in the current models of the lunar gravity field, which is primarily due to the lack of far side lunar tracking data information, which makes the lunar potential modeling difficult but expected to be overcome as data from SELENE satellite-to-satellite tracking becomes available. Comparisons of various lunar models reveal an agreement in the low order coefficients of the spherical harmonics. However, substantial differences in the models exist in the higher-order harmonics. A numerical comparison has been presented showing the performance of all the contemporary lunar gravitational models used within the astrodynamics community and available in public domain. Improvements to the current models are part of a continuing process and the recent model improvements and future possibilities in lunar gravity modeling are discussed. A brief review of the recent missions has been presented. It is hoped that this critical review will benefit the researchers by presenting the historical as well as state of the art in this field.  相似文献   

18.
The Japanese lunar explorer SELENE (SElenological and Engineering Explorer), to be launched in 2007, will for the first time utilize VLBI observations in lunar gravimetry investigations. This will particularly improve the accuracy to which the low degree gravitational harmonics and the gravity field near the limb can be measured, and when combined with Doppler measurements will enable three-dimensional information to be extracted. Differential VLBI Radio sources called VRAD experiment involves two on-board sub-satellites, Rstar and Vstar. These will be observed using differential VLBI to measure the trajectories of the satellites with the Japanese network named VERA (VLBI Exploration of Radio Astrometry) and an international VLBI network.  相似文献   

19.
Preliminary results of numerical simulation are presented to examine the gravity estimation capability in the Japanese lunar exploration project SELENE (SELenological and ENgineering Explorer), which will be launched in 2003. One of the new characteristics of the SELENE lunar gravimetry is 4-way satellite-to-satellite Doppler tracking of a low-altitude lunar orbiter by means of a high-altitude relay satellite. It is shown that planned satellites configuration will provide a good far-side data coverage of the lunar orbiter and will improve lunar gravity field as well as far-side selenoid.  相似文献   

20.
Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA’s advanced life support system research. With the objective of in situ resource utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions. Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air permeability characteristics of six plant growth substrates for potential applications in space, including two terrestrial analogs for lunar and Martian soils and four particulate substrates widely used in reduced gravity experiments. To simulate reduced gravity water characteristics, the predictions for ground-based measurements (1 − g) were scaled to two reduced gravity conditions, Martian gravity (0.38 − g) and lunar gravity (0.16 − g), following the observations in previous reduced gravity studies. We described the observed gas diffusivity with a recently developed model combined with a new approach that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using a substrate-structure parameter related to the gaseous phase, we adequately described the air permeability under reduced gravity conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号