首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The ionospheric laboratory of Wuhan University has developed an ionosonde over about seven years. The prototype is designed as a portable, low-power digital MF (medium frequency) and HF (high frequency) radio system with high range and Doppler resolution. The first system is used for ionospheric oblique backscattering detection and called WIOBSS (Wuhan Ionospheric Oblique Backscattering Sounding System). WIOBSS is a portable monostatic ionosonde for both ionospheric research and HF channel management, adopting alternate transmitting and receiving patterns to transmit long coded pulse trains for high pulse compression gain. The almost perfect sequences are applied to modulate the pulse train for sounding without range sidelobes and the echo phase is used to estimate the Doppler velocity and velocity fluctuation. This paper introduces the new techniques adopted by WIOBSS and presents some observations.  相似文献   

2.
The present paper deals with observations of wave activity in the period range 1–60 min at ionospheric heights over the Western Cape, South Africa from May 2010 to July 2010. The study is based on the Doppler type sounding of the ionosphere. The Doppler frequency shift measurements are supplemented with measurements of collocated Digisonde DPS-4D at SANSA Space Sciences, Hermanus. Nine geomagnetically quiet days and nine geomagnetically active days were included in the study. Waves of periods 4–30 min were observed during the daytime independent of the level of geomagnetic activity. Amplitudes of 10–30 min waves always increased between 14:00 and 16:15 UT (16:00–18:15 LT). Secondary maxima were observed between 06:00 and 07:00 UT (08:00–09:00 LT). The maximum wave amplitudes occurred close to the time of passage of the solar terminator in the studied region which is known to act as a source of gravity waves.  相似文献   

3.
This paper presents a case study when due to the descending additional U-shaped trace on vertical incidence ionograms, increased critical frequency stabilizes. This corresponds to an ionospheric disturbance that moves toward the ionosonde and then stays overhead.Within a 2D model, traveling ionospheric disturbances (TIDs) are superimposed on the inverted background ionosphere. So ray tracing is used to obtain propagation paths through non-stratified ionosphere thus synthesizing the disturbed ionogram traces. Investigated are changes in the cusp shape caused by varying TID parameters. A cusp-fitting method to determine the TID amplitude, spatial scale, and horizontal drift velocity are shown.  相似文献   

4.
The paper presents a physical mechanism of large-scale vortex electric field generation in the ionospheric E- and F-layers. It shows that the planetary-scale, synoptic short-period (from several second to several hours) and fast processes (with propagation velocity higher than 1 km/s) produce a planetary-scale internal vortex electric field. Its value may far exceed that of the dynamo-field generated in the same ionospheric layer by local wind motion. We found, that an ionospheric source of the vortex electric field is spatial inhomogeneity of the geomagnetic field.  相似文献   

5.
In this paper, the AdaBoost-BP algorithm is used to construct a new model to predict the critical frequency of the ionospheric F2-layer (foF2) one hour ahead. Different indices were used to characterize ionospheric diurnal and seasonal variations and their dependence on solar and geomagnetic activity. These indices, together with the current observed foF2 value, were input into the prediction model and the foF2 value at one hour ahead was output. We analyzed twenty-two years’ foF2 data from nine ionosonde stations in the East-Asian sector in this work. The first eleven years’ data were used as a training dataset and the second eleven years’ data were used as a testing dataset. The results show that the performance of AdaBoost-BP is better than those of BP Neural Network (BPNN), Support Vector Regression (SVR) and the IRI model. For example, the AdaBoost-BP prediction absolute error of foF2 at Irkutsk station (a middle latitude station) is 0.32 MHz, which is better than 0.34 MHz from BPNN, 0.35 MHz from SVR and also significantly outperforms the IRI model whose absolute error is 0.64 MHz. Meanwhile, AdaBoost-BP prediction absolute error at Taipei station from the low latitude is 0.78 MHz, which is better than 0.81 MHz from BPNN, 0.81 MHz from SVR and 1.37 MHz from the IRI model. Finally, the variety characteristics of the AdaBoost-BP prediction error along with seasonal variation, solar activity and latitude variation were also discussed in the paper.  相似文献   

6.
高精度多普勒频高图的获取和分析   总被引:4,自引:1,他引:4  
电离层高频反射回波的多普勒频移是研究电离层扰动的一个重要参数。在数字测高仪探测中,高分辩率的多普勒频移一般在漂移测量中获得,但这种测量方式探测的频点少,不能获得扰动的高度剖面;而在频高图模式下,虽然工作的频点多,能够获得电子浓度的高度剖面的信息,但探测的多普勒频移的分辩率低,无法用来精确检测电离层扰动。实际的电离层高频回波一般为窄带信号,由此本文中提出了一种新的分析方法,利用DGS-256数字测高仪频高图模式下记录的16个多普勒通道的数据,通过反傅里叶变换还原成时域信号,采用最小二乘法估计相邻时间点的相位差,获得高精度多普勒频高图。作为实例,利用该方法分析武汉电离层观象台数字测高仪观测站的观测数据,得到了多频点的多普勒频移曲线。结果表明:在DGS-256数字测高仪频高图模式下能够得到高精度多普勒频高图,这在电离层扰动探测和研究中很在意义。  相似文献   

7.
The ionospheric plasma density can be significantly disturbed during magnetic storms. In the conventional scenario of ionospheric storms, the negative storm phases with plasma density decreases are caused by neutral composition changes, and the positive storm phases with plasma density increases are often related to atmospheric gravity waves. However, recent studies show that the global redistribution of the ionospheric plasma is dominated primarily by electric fields during the first hours of magnetic storms. In this paper, we present the measurements of ionospheric disturbances by the DMSP satellites and GPS network during the magnetic storm on 6 April 2000. The DMSP measurements include the F region ion velocity and density at the altitude of ∼840 km, and the GPS receiver network provides total electron content (TEC) measurements. The storm-time ionospheric disturbances show the following characteristics. The plasma density is deeply depleted in a latitudinal range of ∼20° over the equatorial region in the evening sector, and the depletions represent plasma bubbles. The ionospheric plasma density at middle latitudes (20°–40° magnetic latitudes) is significantly increased. The dayside TEC is increased simultaneously over a large latitudinal range. An enhanced TEC band forms in the afternoon sector, goes through the cusp region, and enters the polar cap. All the observed ionospheric disturbances occur within 1–5 h from the storm sudden commencement. The observations suggest that penetration electric fields play a major role in the rapid generation of equatorial plasma bubbles and the simultaneous increases of the dayside TEC within the first 2 h during the storm main phase. The ionospheric disturbances at later times may be caused by the combination of penetration electric fields and neutral wind dynamo process.  相似文献   

8.
在小型天线和低发射功率条件下,保证电离层测高仪观测数据质量和提高观测速度一直是电离层垂测的技术难点.针对这一问题,基于新近发展的高速数字芯片和射频器件,采用窄带跟踪滤波、脉冲压缩、编码复用和天线均衡匹配等技术,设计和研制一种敏捷数字电离层测高仪.该系统采用数米高的小型收发天线和便携式主机系统,配置任意频率扫描方式频高图、高分辨率多普勒频高图和斜向探测等多种工作模式,具有可流动观测布站、系统参数灵活捷变及适合快速电离层扰动探测等能力.敏捷数字电离层测高仪为组网观测获得大范围电离层时空变化和电离层快速扰动及传播提供了一种有效的探测手段.   相似文献   

9.
The MSTIDs are wave-like perturbations of the ionospheric plasma, which cause the most common ionospheric disturbances in mid-latitude regions. Generally the MSTIDs have velocities of several hundred meters per second and wavelengths of several hundred kilometers. The wave-like effect of the MSTID is one of the main obstacles for accurate interpolation of ionospheric corrections in a medium-scale reference GPS network. In this paper we show a new method of detecting and modeling MSTIDs using dense German GPS network. The between-epoch single difference ionospheric delays from a medium scale dense GPS network are used to estimate the parameter of the MSTID e.g. amplitude, wavelength and velocity. The efficiency of the approach is tested with data from about 320 GPS stations in and near Germany. A MSTID wave moving from east to west across Germany was observed at September 27 in 2009. Its wavelength is about 302 km, with a period of ∼7 min and velocity of about 700 m/s.  相似文献   

10.
Ionospheric effects of meteorological origin observed by the continuous HF Doppler sounder over the Czech Republic are reported in this paper. We focused on detection of waves of periods 1–10 min. We discuss the influence of dynamics and intensity of active weather systems on the occurrence of short period waves and dependence of the observed ionospheric effects on the height of reflection of the sounding radio wave. We observed 3–5 min waves during a severe weather event in summer and 2.5–4 min waves during a severe weather event in winter. We excluded possible geomagnetic origin of these oscillations by the analysis of fluctuations of the local geomagnetic field. In eight cases of 10, wave activity in the analysed period range was not significantly increased comparing to quiet days. The intensity of weather systems as well as the location of potential sources of waves towards the points of HF Doppler shift observation influence significantly the occurrence of infrasonic waves in the ionosphere. The results in Central Europe differ considerably from those previously obtained in North America. As a possible reason, we discuss different intensity and dynamics of weather systems in both regions.  相似文献   

11.
There are remarkable ionospheric discrepancies between space-borne (COSMIC) measurements and ground-based (ionosonde) observations, the discrepancies could decrease the accuracies of the ionospheric model developed by multi-source data seriously. To reduce the discrepancies between two observational systems, the peak frequency (foF2) and peak height (hmF2) derived from the COSMIC and ionosonde data are used to develop the ionospheric models by an artificial neural network (ANN) method, respectively. The averaged root-mean-square errors (RMSEs) of COSPF (COSMIC peak frequency model), COSPH (COSMIC peak height model), IONOPF (Ionosonde peak frequency model) and IONOPH (Ionosonde peak height model) are 0.58 MHz, 19.59 km, 0.92 MHz and 23.40 km, respectively. The results indicate that the discrepancies between these models are dependent on universal time, geographic latitude and seasons. The peak frequencies measured by COSMIC are generally larger than ionosonde’s observations in the nighttime or middle-latitudes with the amplitude of lower than 25%, while the averaged peak height derived from COSMIC is smaller than ionosonde’s data in the polar regions. The differences between ANN-based maps and references show that the discrepancies between two ionospheric detecting techniques are proportional to the intensity of solar radiation. Besides, a new method based on the ANN technique is proposed to reduce the discrepancies for improving ionospheric models developed by multiple measurements, the results indicate that the RMSEs of ANN models optimized by the method are 14–25% lower than the models without the application of the method. Furthermore, the ionospheric model built by the multiple measurements with the application of the method is more powerful in capturing the ionospheric dynamic physics features, such as equatorial ionization, Weddell Sea, mid-latitude summer nighttime and winter anomalies. In conclusion, the new method is significant in improving the accuracy and physical characteristics of an ionospheric model based on multi-source observations.  相似文献   

12.
We have employed the hourly values of the ionospheric F-region critical frequency (foF2) obtained from Ouagadougou ionosonde, Burkina Faso (geographic coordinates 12° N, 1.8° W) during the interval of 1985–1995 (solar cycle 22) and solar radio flux of 10 cm wavelength (F10.7) to develop a local model (LM) for the African low-latitude station. The model was developed from regression analysis method, using the two-segmented regression analysis. We validated LM with foF2 data from Korhogo observatory, Cote d’Ivorie (geographical coordinates 9.3° N, 5.4° W). LM as well as the International Reference Ionosphere (IRI) agrees well with observations. LM gave some improvement on the IRI-predicted foF2 values at the sunrise (06 LT) at all solar flux levels and in all seasons except June solstice. The performance of the models at the representing the salient features of the equatorial foF2 was presented. Considering daytime and nighttime performances, LM and IRI are comparable in low solar activity (LSA), LM performed better than IRI in moderate solar activity (MSA), while IRI performed better than LM in high solar activity (HSA). CCIR has a root mean square error (r.m.s.e), which is only 0.10 MHz lower than that of LM while LM has r.m.s.e, which is about 0.05 MHz lower than that of URSI. In general, our result shows that performance of IRI, especially the CCIR option of the IRI, is quite comparable with the LM. The improved performance of IRI is a reflection of the numerous contributions of ionospheric physicists in the African region, larger volume of data for the IRI and the diversity of data sources, as well as the successes of the IRI task force activities.  相似文献   

13.
Scintillated GPS phase observations are traditionally characterized by the phase scintillation index, derived from specialized GPS receivers usually tracking at 50 Hz. Geodetic quality GPS receivers, on the other hand, are normally tracking at frequencies up to 1 Hz. However, availability of continuously operating geodetic receivers both in time and geographical location are superior to scintillation receiver’s coverage in many parts of the world. This motivates scintillation studies using regional and global geodetic GPS networks. Previous studies have shown the usefulness of GPS estimated total electron content variations for detecting ionospheric irregularities. In this paper, collocated geodetic and scintillation receivers are employed to compare proxy indices derived from geodetic receivers with the phase scintillation index during quiet and moderately disturbed ionospheric conditions. Sensitivity of the phase scintillation indices at high latitude stations to geomagnetic activity is discussed. Global mapping of ionospheric disturbances using proxy indices from real-time 1 Hz GPS stations are also presented.  相似文献   

14.
A study of the critical frequency foF2 variations after the large earthquake (Ms = 8.1) which occurred on 29 September, 2009 in the region of Samoa Islands in the Pacific Ocean is carried out using data of the ionospheric station of Kwajalein. The epicenter of the earthquake was located at about 184 km southwest from Apia (the capital of West Samoa). It was found that wave-like perturbations of foF2 were observed for ∼3 h above the station (located approximately 3560 km northwest from the epicenter). The amplitude of the disturbance was as large as ∼20% of the average magnetic quiet day foF2 values. A comparison of the observed perturbations of foF2 with the ones detected at Stanford ionospheric station after the Alaska earthquake of 28 March 1964 (Ms = 8.4) showed a close similarity of the wave-like perturbations of foF2 in both cases.  相似文献   

15.
It is well known that the ionosphere affects radio wave propagation especially in the high frequency (HF) range. HF radio waves reflected by the ionosphere can reach considerable distances, often with changes in amplitude, phase, and frequency. The ionosphere is a dispersive in frequency and time, bi-refractive, absorbing medium, in which multipath propagation due to traveling irregularities is very frequent. The traveling irregularities undulate the reflecting ionospheric layer, introducing variations in signal amplitude (fading). In this multipath time variant channel fading is mainly considered, even though it is not the sole effect. Echo signals from a single reflection, as in ionospheric vertical sounding (VIS) techniques, are affected by a certain degree of variability even in quiet ionospheric conditions. In this work the behavior of the ionospheric channel is studied and characterized by observing the power variation of received echoes using the VIS technique. Multipath fading was analyzed quantifying the power variation of the signal echo due to irregularities on a temporal scale from 0.5 to 256 s. An experimental set-up derived from an ionosonde was implemented and the analysis was performed employing a special numerical algorithm operating off-line on the acquired time sequence of the signal. The gain-loss of the irregularity shapes are determined in some special cases.  相似文献   

16.
The primary objective of the Scintillation and Tomography Receiver in Space (CITRIS) is to detect ionospheric irregularities from space at low latitude. For this purpose, the satellite receiver uses the UHF and S-Band transmissions of the ground network of Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) beacons. CITRIS, developed at the Naval Research Laboratory, differs from the normal DORIS receiver by being able to capture and store the complex amplitude of the 401.25 and 2036.25 MHz transmissions at 200 Hz sample rate. Ground processing of the CITRIS data yields total electron content (TEC) and both phase and amplitude scintillations. With CITRIS flying on the US Space Test Program (STP) satellite STPSat1, 2 years of data were collected and processed to determine the fluctuations in ionospheric TEC and radio scintillations associated with equatorial irregularities. CITRIS flights over DORIS transmitters yield direct measurements of the horizontal plasma density fluctuations associated with equatorial plasma bubbles. Future flights of CITRIS can provide valuable complements to other satellite instruments such as GPS occultation receivers used to estimate vertical electron density profiles in the ionosphere.  相似文献   

17.
电离层反射回波的高频多普勒频移测量是研究电离层扰动的重要方法之一.利用基于单频信号相位变化率测量的实时探测方法,获取连续高精度多频多普勒频高图,以实现中小尺度电离层扰动的快速探测研究.该方法被应用于敏捷式高性能电离层无线电多频探测系统样机平台.经验证在该平台上获取的多普勒频移分辨率可达0.039Hz,频高图探测周期最短小于1min.基于这种快速探测方法和平台在武汉观测站进行了较长时间的观测和数据采集,获得高精度多普勒频移并反演出电子浓度等值面法向运动速度,得到电离层反射寻常波的多普勒频高图和垂直扰动速度等信息,进而推演出电离层扰动随时间和空间的实时变化特征.对这些时域信号进行频谱分析,初步结果显示这些扰动主要是由极区活动激发的中国中部地区冬季出现率较高的中尺度TID.此外,对三种常用的电离层扰动反演分析方法进行了对比研究,结果显示电离层扰动的变化趋势基本一致,说明观测数据和研究方法可靠稳定,为多频多点电离层扰动的传播特性观测研究提供了基础.   相似文献   

18.
GALOCAD project “Development of a Galileo Local Component for the nowcasting and forecasting of atmospheric disturbances affecting the integrity of high precision Galileo applications” aims to perform a detailed study on ionospheric small- and medium-scale structures and to assess the influence of these structures on the reliability of Galileo precise positioning applications. GPS-derived TEC (total electron content) is obtained from the Belgium Dense Network (BDN), consisting of 67 permanent GPS stations. An empirical 3-D model is developed for studying these ionospheric structures. The model, named LLT model, described temporal variations of TEC in latitude/longitude frame (46°, 52°)N and (−1°, 11°)E. The spatial variations of TEC are modeled by Tchebishev base functions, while the temporal variations are described by a trigonometric basis. To fit the model to the data, the observed area is divided into bins with (1° × 1°) geographic scale and 6 min on time axis. LLT model is made flexible, with varying number of coefficients along each axis. This allows different degree of smoothing, which is the key element of the present approach. Model runs with higher number of coefficients, capturing in details medium-scale TEC structures are subtracted from results obtained with smaller number of coefficients; the latter represent the background ionosphere. The residual structures are localized and followed as they travel across the observed area. In this way, the size, velocity, and direction of the irregular structures are obtained.  相似文献   

19.
The International Reference Ionosphere IRI-2001 model contains geomagnetic activity dependence based on an empirical storm time ionospheric correction (STORM model). An extensive validation of the STORM model for the middle latitude region has been performed. In this paper the ability of the STORM model to predict foF2 values at high latitudes is analyzed. For this, ionosonde data obtained at Base Gral. San Martin (68.1°S, 293°E) are compared with those obtained by the IRI-2001 model with or without storm correction during four geomagnetic storms that occurred in 2000 (Rz12 = 117) and 2001 (Rz12 = 111). The results show that predicted values with the STORM model follow the behaviour of foF2 experimental data better than without the STORM model. The relative deviation between measured and predicted foF2 reaches values of up to 24% and 43% with and without the STORM model in IRI-2001, during the main phase of the storms. In order to explain increases of electron density that occurred prior to the storm onset and also decreases of electron density observed during the first part of the recovery of the storm, possible physical mechanisms are discussed.  相似文献   

20.
The article is devoted to modeling the impact on the ionosphere powerful obliquely incident wave beam. The basis of this analysis will be orbital variational principle for the intense wave beams-generalization of Fermat’s principle to the case of a nonlinear medium (, ,  and ). Under the influence of a powerful wave beam appears manageable the additional stratification of the ionospheric layer F2. Explicit expressions show how the properties of the test beam, with a shifted frequency, released in the same direction as the beam depend on the intensity of a powerful beam and the frequency shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号