首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) on the SOlar Radiation and Climate Experiment (SORCE) has been measuring the solar spectral irradiance on a daily basis since early 2003. This time period includes near-solar maximum conditions, the Halloween storms of 2003, and solar minimum conditions. These results can be compared to observations from the SOLSTICE I experiment that flew on the Upper Atmosphere Research Satellite (UARS) during the decline of the previous solar cycle as well as with currently operating missions. We will discuss similarities and differences between the two solar cycles in the long-term ultraviolet irradiance record.  相似文献   

2.
The solar photon output from the Sun, which was once thought to be constant, varies considerably over time scales from seconds during solar flares to years due to the solar cycle. This is especially true in the wavelengths shorter than 190 nm. These variations cause significant deviations in the Earth and space environment on similar time scales, which then affects many things including satellite drag, radio communications, atmospheric densities and composition of particular atoms, molecules, and ions of Earth and other planets, as well as the accuracy in the Global Positioning System (GPS). The Flare Irradiance Spectral Model (FISM) is an empirical model that estimates the solar irradiance at wavelengths from 0.1 to 190 nm at 1 nm resolution with a time cadence of 60 s. This is a high enough temporal resolution to model variations due to solar flares, for which few accurate measurements at these wavelengths exist. This model also captures variations on the longer time scales of solar rotation (days) and solar cycle (years). Daily average proxies used are the 0–4 nm irradiance, the Mg II c/w, F10.7, as well as the 1 nm bins centered at 30.5 nm, 121.5 (Lyman Alpha), and 36.5 nm. The GOES 0.1–0.8 nm irradiance is used as the flare proxy. The FISM algorithms are given, and results and comparisons are shown that demonstrate the FISM estimations agree within the stated uncertainties to the various measurements of the solar Vacuum Ultraviolet (VUV) irradiance.  相似文献   

3.
The solar soft X-ray (XUV; 1–30 nm) radiation is highly variable on all time scales and strongly affects the ionosphere and upper atmosphere of Earth, Mars, as well as the atmospheres and surfaces of other planets and moons in the solar system; consequently, the solar XUV irradiance is important for atmospheric studies and for space weather applications. While there have been several recent measurements of the solar XUV irradiance, detailed understanding of the solar XUV irradiance, especially its variability during flares, has been hampered by the lack of high spectral resolution measurements in this wavelength range. The conversion of the XUV photometer signal into irradiance requires the use of a solar spectral model, but there has not been direct validation of these spectral models for the XUV range. For example, the irradiance algorithm for the XUV Photometer System (XPS) measurements uses multiple CHIANTI spectral models, but validation has been limited to other solar broadband measurements or with comparisons of the atmospheric response to solar variations. A new rocket observation of the solar XUV irradiance with 0.1 nm resolution above 6 nm was obtained on 14 April 2008, and these new results provide a first direct validation of the spectral models used in the XPS data processing. The rocket observation indicates very large differences for the spectral model for many individual emission features, but the differences are significantly smaller at lower resolution, as expected since the spectral models are scaled to match the broadband measurements. While this rocket measurement can help improve a spectral model for quiet Sun conditions, many additional measurements over a wide range of solar activity are needed to fully address the spectral model variations. Such measurements are planned with a similar instrument included on NASA’s Solar Dynamics Observatory (SDO), whose launch is expected in 2009.  相似文献   

4.
Total Solar Irradiance (TSI) has been measured for more than three decades. These observations demonstrate that total irradiance changes on time scales ranging from minutes to years and decades. Considerable efforts have been made to understand the physical origin of irradiance variations and to model the observed changes using measures of sunspots and faculae. In this paper, we study the short-term variations in TSI during the declining portion and minimum of solar cycle 22 and the rising portion of cycle 23 (1993–1998). This time interval of low solar activity allows us to study the effect of individual sunspot groups on TSI in detail. In this paper, we indicate that the effect of sunspot groups on total irradiance may depend on their type in the Zürich classification system and/or their evolution, and on their magnetic configuration. Some uncertainties in the data and other effects are also discussed.  相似文献   

5.
The heliocentric orbital dynamics of a spacecraft propelled by a solar sail is affected by some uncertainty sources, including possible inaccuracies in the measurement of the sail film optical properties. Moreover, the solar radiation pressure, which is responsible for the solar sail propulsive acceleration generation, is not time-constant and is subject to fluctuations that are basically unpredictable and superimposed to the well-known 11-year solar activity cycle. In this context, this work aims at investigating the effects of such uncertainties on the actual heliocentric trajectory of a solar sail by means of stochastic simulations performed with a generalized polynomial chaos procedure. The numerical results give an estimation of their impact on the actual heliocentric trajectory and identify whether some of the uncertainty sources are more relevant than others. This is a fundamental information for directing more accurate theoretical and experimental efforts toward the most important parameters, in order to obtain an accurate knowledge of the solar sail thrust vector characteristics and, eventually, of the spacecraft heliocentric position.  相似文献   

6.
A century has elapsed since the first observation of the polarimetric profile of a line of the solar spectrum. Since then, dramatic progress has been made in the instrumentation, which is now reaching unprecedented levels of sensitivity in the measurement of polarization signals in solar spectral lines. At the same time, the theoretical framework needed for the interpretation of polarimetric observations has steadily evolved from the pioneering methods, based on simple formulae, to the sophisticated structure that is nowadays used with success in the interpretation of solar observations. The present paper is intended to give a historical perspective of the evolution of this research field and of its major achievements, with particular emphasis on the role played by the magnetic field in determining the polarimetric shapes of spectral lines.  相似文献   

7.
Precipitating electrons from the radiation belts with energies greater than from 150 keV to 5 MeV have been correlated with ozone data of a large number of stations located within 40–70° N. Energetic electrons have been collected by the low altitude polar Russian satellite METEOR while ozone data have been compiled from almost ninety (90) stations located all over the world within the latitude zone 40–70° N.  相似文献   

8.
The CORONAS-F mission experiments and results have been reviewed. The observations with the DIFOS multi-channel photometer in a broad spectral range from 350 to 1500 nm have revealed the dependence of the relative amplitudes of p-modes of the global solar oscillations on the wavelength that agrees perfectly well with the earlier data obtained in a narrower spectral ranges. The SPIRIT EUV observations have enabled the study of various manifestations of solar activity and high-temperature events on the Sun. The data from the X-ray spectrometer RESIK, gamma spectrometer HELICON, flare spectrometer IRIS, amplitude–temporal spectrometer AVS-F, and X-ray spectrometer RPS-1 have been used to analyze the X- and gamma-ray emission from solar flares and for diagnostics of the flaring plasma. The absolute and relative content of various elements (such as potassium, argon, and sulfur) of solar plasma in flares has been determined for the first time with the X-ray spectrometer RESIK. The Solar Cosmic Ray Complex monitored the solar flare effects in the Earth’s environment. The UV emission variations recorded during solar flares in the vicinity of the 120-nm wavelength have been analyzed and the amplitude of relative variations has been determined.  相似文献   

9.
We determine the spatial-time patterns of zonally averaged carbon monoxide (CO) in the middle atmosphere by applying Principle Component Analysis to the CO data obtained from the Microwave Limb Sounder (MLS) measurements on the Aura satellite in 2004–2012. The first two principal components characterize more than 90% of the CO variability. Both principal components are localized in the low thermosphere near the mesopause. The first principal component is asymmetric relative to the poles. It has opposite signs in the Northern and Southern Hemisphere at mid to high latitudes and strongly oscillates with an annual periodicity. The second principal component has the same sign in both hemispheres and oscillates mainly with a semi-annual frequency. Both principal components are modulated by the 11-year solar cycle and display short-term variations. To test possible correlations of these variations with the short term solar ultraviolet (UV) variability we use the simultaneous measurements of the UV solar radiance from the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) on the Solar Radiation and Climate Experiment (SORCE) satellite to investigate the correlation between CO in the middle atmosphere and solar UV in 2004–2012. Using a wavelet coherence technique a weak, intermittent 27-day signal is detected in high-frequency parts of the CO principal components.  相似文献   

10.
Experiments on SMM, GAMMA, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics of flares and to the ambient abundance of the solar corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy (including some results of several joint Russian–Chinese projects) and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measurements (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events (e.g., 28 October 2003 and 20 January 2005) have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays, or SCR). A number of different plausible assumptions are considered concerning the details of underlying physical processes during large flares: (1) existence of a steeper distribution of surrounding medium density as compared to a standard astrophysical model (HSRA) for the solar atmosphere; (2) enhanced content of the 3He isotope; (3) formation of magnetic trap with specific properties; (4) prevailing non-uniform (e.g., fan-like) velocity (angular) distributions of secondary neutrons, etc. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and energetic particle observations during the same event. We especially note several promising lines for the further studies: (1) resonant acceleration of the 3He ions in the corona; (2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; (3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different acceleration sources/episodes during the same flare, contribution of energetic particles accelerated by the CME-driven shocks etc.); (4) asymmetric magnetic geometry and new magnetic topology models of the near-limb flares; (5) modeling of self-consistent time scenario of the event.  相似文献   

11.
X-ray flares and acceleration processes are in one complex of sporadic solar events (together with CMEs, radio bursts, magnetic field dissipation and reconnection). This supposes the connection (if not physical, but at least statistical) between characteristics of the solar energetic proton events and flares. The statistical analysis indicates that probability and magnitude of the near-Earth proton enhancement depends heavily on the flare importance and their heliolongitude. These relations may be used for elaboration of the forecasting models, which allow us to calculate probability of the solar proton events from the X-ray observations.  相似文献   

12.
We use the 8-year long satellite temperature data (2002–2010) from Atmospheric InfraRed Sounder (AIRS) and Atmospheric Microwave Sounding Unit (AMSU) on the Aqua satellite to identify temperature trends in the troposphere and low stratosphere over the Niño 3.4 region of the Tropical Pacific Ocean in the most recent 11-year solar cycle. Employing more extended sea surface temperature (SST) data for five solar cycles (1950–2009) in this region we show that the satellite trends reflect a typical decrease of the sea surface temperature (SST) in the Niño 3.4 region in the declining phase of the solar cycle. The magnitude of the SST decrease depends on the solar cycle and ranges between 0.07 K/yr and 0.27 K/yr for the last five solar cycles.  相似文献   

13.
We report multi-wavelength investigation of the pre-impulsive phase of the 13 December 2006 X-class solar flare. We use hard X-ray data from the anticoincidence system of spectrometer onboard INTEGRAL (ACS) jointly with soft X-ray data from the GOES-12 and Hinode satellites. Radio data are from Nobeyama and Learmonth solar observatories and from the Culgoora Solar Radio Spectrograph. The main finding of our analysis is a spiky increase of the ACS count rate accompanied by surprisingly gradual and weak growth of microwave emission and without detectable radio emission at meter and decimeter wavelengths about 10 min prior to the impulsive phase of the solar flare. At the time of this pre-flare hard X-ray burst the onset of the GOES soft X-ray event has been reported, positive derivative of the GOES soft X-ray flux started to rise and a bright spot has appeared in the images of the Hinode X-ray telescope (XRT) between the flare ribbons near the magnetic inversion line close to the sources of thermal and non-thermal hard X-ray emission observed by Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) during the flare. These facts we consider as evidences of solar origin of the increased pre-flare ACS count rate. We briefly discuss a possible cause of the pre-flare emission peculiarities.  相似文献   

14.
The 20th century temperature anomaly record is reproduced using an energy balance model, with a diffusive deep ocean. The model takes into account all the standard radiative forcings, and in addition the possibility of a non-thermal solar component. The model is parameterized and then optimized to produce the most likely values for the climate parameters and radiative forcings which reproduce the 20th century global warming. We find that the best fit is obtained with a negligible net feedback. We also show that a non-thermal solar component is necessarily present, indicating that the total solar contribution to the 20th century global warming, of ΔTsolar = 0.27 ± 0.07 °C, is much larger than can be expected from variation in the total solar irradiance alone. However, we also find that the largest contribution to the 20th century warming comes from anthropogenic sources, with ΔTman = 0.42 ± 0.11 °C.  相似文献   

15.
The SOHO/MDI data provide the uniform time series of the synoptic magnetic maps which cover the period of the cycle 23 and the beginning of the cycle 24. It is very interesting period because of the long and deep solar minimum between the cycles 23 and 24. Synoptic structure of the solar magnetic field shows variability during solar cycles. It is known that the magnetic activity contributes to the solar irradiance. The axisymmetrical distribution of the magnetic flux (Fig. 3c) is closely associated with the ‘butterfly’ diagram in the EUV emission (Benevolenskaya et al., 2001). And, also, the magnetic field (B) shows the non-uniform distributions of the solar activity with longitude, so-called ‘active zones’, and ‘coronal holes’ in the mid-latitude. Polar coronal holes are forming after the solar maxima and they persist during the solar minima. SOHO/EIT data in the emission of Fe XII (195 Å) could be a proxy for the coronal holes tracking. The active longitudinal zones or active longitude exist due to the reappearance of the activity and it is clearly seen in the synoptic structure of the solar cycle. On the descending branch of the solar cycle 23 active zones are less pronounced comparing with previous cycles 20, 21 and 22. Moreover, the weak polar magnetic field precedes the long and deep solar minimum. In this paper we have discussed the development of solar cycles 23 and 24 in details.  相似文献   

16.
Several important issues are open in the field of solar variability and they wait their solution which up to now was attempted using critical ground-based instrumentations. However, accurate photometric data are attainable only from space. New observational material should be collected with high enough spatial and spectral resolution, covering the whole visible range of the electromagnetic spectrum as well infrared and ultraviolet to reconstruct the total solar irradiance: (1) the absolute contributions of different small-scale structural entities of the solar atmosphere from the white light flares and from micro-flares are still poorly known; (2) we do not know the absolute contributions of different structural elements of the solar atmosphere to the long-term and to the cyclic variations of the solar irradiance, including features of the polar regions of the Sun; (3) the variations of the chromospheric magnetic network are still poorly evaluated; (4) only scarce information is available about the spectral variations of different small-scale features in the high photosphere. Variability of the Sun in white light can be studied with higher spectral, spatial and time resolution using space-born telescopes, which are more appropriate for this purpose than ground based observatories because of better seeing conditions, no interference of the terrestrial atmosphere and a more precise calibration procedure. Scientific requirements for such observations and the possible experimental tools proposed for their solution. Suggested solar studies have broader astrophysical importance.  相似文献   

17.
Current literature suggests that several lines in the soft X-ray portion of the coronal spectrum may not be optically thin. Here, we confirm the results of Schmelz et al. (1996) who find no significant opacity effects for three of the brightest non-iron resonance lines in this part of the spectrum — O VIII at 18.97Å, Ne IX at 13.45Å, and Mg XI at 9.17Å. A comparison is made between each of these lines and an optically thin “reference” line produced by the same element in the same ionization state — O VIII at 15.18Å, Ne IX at 13.55Å, and Mg XI at 9.23Å. In the latter two cases, the comparison line is the intersystem line of the He-like triplet. 33 spectra from the Solar Maximum Mission Flat Crystal Spectrometer are analyzed, all of which were obtained from non-flaring, quasi-stable active regions.  相似文献   

18.
An analysis of D-region electron density height profile variations, induced by four isolated solar X-ray flares during period from September 2005 to December 2006, based on the amplitude and the phase delay perturbation of 22.1 kHz signal trace from Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E), coded GQD, was carried out. Solar flare data were taken from NOAA GOES12 satellite one-minute listings. For VLF data acquisition and recordings at the Institute of Physics, Belgrade, Serbia, the AbsPAL system was used. Starting from LWPCv21 code (Ferguson, 1998), the variations of the Earth-ionosphere waveguide characteristic parameters, sharpness and reflection height, were estimated during the flare conditions. It was found that solar flare events affected the VLF wave propagation in the Earth-ionosphere waveguide by changing the lower ionosphere electron density height profile, in a different way, for different solar flare events.  相似文献   

19.
Observations of the chromosphere with Deslandres’s spectroheliograph started at Paris Observatory in 1893 and were followed by systematic observations at Meudon since 1908. The solar collection of Hα and CaII K images is probably the longest available worldwide, with associated products such as synoptic maps and tables. Since 2018, Meudon spectroheliograph is the only instrument producing data-cubes of full line profiles of CaII H, CaII K and Hα, for each pixel of the solar disk. Slices of the cubes provide monochromatic images. We summarize in this paper the capabilities of the successive generations of the instrument, and explore the potential of the collection and products for analysis of rare events, investigations of past solar activity and studies of long term variability.  相似文献   

20.
In this paper, using the intensity ratio of carbon ions emission lines, we determined the optical depths at the line center of the CI at about 165.7 nm, CII at about 133.5 nm, CIII at about 117.5 nm and CIV at about 154.9 nm emission lines by escape factor treatment. For CI and CII emission lines, we discuss the intensity ratio of two lines arising from the common upper levels; while for CIII and CIV emission lines, we discuss the intensity ratio of two lines arising from the common lower levels. By introducing the measured abundance of carbon and the results of ionization balance calculations, we make an estimate of the line-of-sight physical thickness of the regions of carbon ions. This discussion will provide some results in the discussion of opacity on the solar ultraviolet (UV) or extreme-ultraviolet (EUV) spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号