共查询到20条相似文献,搜索用时 15 毫秒
1.
Tünde Baranyi Judit M. Pap 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Total Solar Irradiance (TSI) has been measured for more than three decades. These observations demonstrate that total irradiance changes on time scales ranging from minutes to years and decades. Considerable efforts have been made to understand the physical origin of irradiance variations and to model the observed changes using measures of sunspots and faculae. In this paper, we study the short-term variations in TSI during the declining portion and minimum of solar cycle 22 and the rising portion of cycle 23 (1993–1998). This time interval of low solar activity allows us to study the effect of individual sunspot groups on TSI in detail. In this paper, we indicate that the effect of sunspot groups on total irradiance may depend on their type in the Zürich classification system and/or their evolution, and on their magnetic configuration. Some uncertainties in the data and other effects are also discussed. 相似文献
2.
Phillip C. Chamberlin Thomas N. WoodsFrancis G. Eparvier 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The solar photon output from the Sun, which was once thought to be constant, varies considerably over time scales from seconds during solar flares to years due to the solar cycle. This is especially true in the wavelengths shorter than 190 nm. These variations cause significant deviations in the Earth and space environment on similar time scales, which then affects many things including satellite drag, radio communications, atmospheric densities and composition of particular atoms, molecules, and ions of Earth and other planets, as well as the accuracy in the Global Positioning System (GPS). The Flare Irradiance Spectral Model (FISM) is an empirical model that estimates the solar irradiance at wavelengths from 0.1 to 190 nm at 1 nm resolution with a time cadence of 60 s. This is a high enough temporal resolution to model variations due to solar flares, for which few accurate measurements at these wavelengths exist. This model also captures variations on the longer time scales of solar rotation (days) and solar cycle (years). Daily average proxies used are the 0–4 nm irradiance, the Mg II c/w, F10.7, as well as the 1 nm bins centered at 30.5 nm, 121.5 (Lyman Alpha), and 36.5 nm. The GOES 0.1–0.8 nm irradiance is used as the flare proxy. The FISM algorithms are given, and results and comparisons are shown that demonstrate the FISM estimations agree within the stated uncertainties to the various measurements of the solar Vacuum Ultraviolet (VUV) irradiance. 相似文献
3.
Xingming Bao Wenbin Xie 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
On 2010 February 8, the Extreme ultraviolet (EUV) flux variation in 195 Å and flare brightening has been examined in different sizes of active regions by using SOHO/EIT, MDI and Hα observational data. These three active regions represent a large active region with a sunspot group, a moderate active region without a sunspot and a small region with weak plage in Hα band respectively. Our study shows that the main full disk EUV flux comes from active regions, especially from large active regions. The sudden increases of EUV flux are corresponding to the EUV flare brightenings. For the large active region, the local EUV 195 Å flux peaks are well correlated to that of the GOES X-ray flux. The EUV 195 Å flux peaking time of M-class flares delay GOES X-ray flux a few minutes. For the moderate active region, the local EUV 195 Å flux is not well correlated to GOES X-ray flux. The EUV 195 Å flare brightenings in the moderate active region appeared in the duration of sudden increase of its own local EUV flux. For the small active region, the local EUV 195 Å flux varied almost independently of the GOES X-ray flux. Our study suggests that for an active region its local EUV 195 Å flux is more closely correlated to the EUV flare brightening than the full disk GOES X-ray flux. 相似文献
4.
5.
B. Sylwester J. Sylwester K.J.H. Phillips E. Landi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We present the observations of He-like Ar triplet lines obtained by RESIK spectrometer aboard CORONAS-F. Interpretation of intensity ratios between triplet lines of lower Z elements is known to provide useful diagnostics of plasma conditions within the emitting source. Here, we investigate whether triplet line ratios are useful for interpretation of higher Z element spectra. A high sensitivity, low background and precise absolute calibration of RESIK allow to consider in addition also the continuum contribution. This provides a way to determine the Ar absolute abundance from the observed triplet component ratios. The method is presented and the results are shown for two selected flares. Derived values of Ar absolute abundance for these flares are found to be similar: 2.6 × 10−6 and 2.9 × 10−6. They fall in the range between presently accepted Ar photospheric and coronal abundances. 相似文献
6.
M. Snow W.E. McClintock T.N. Woods 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) on the SOlar Radiation and Climate Experiment (SORCE) has been measuring the solar spectral irradiance on a daily basis since early 2003. This time period includes near-solar maximum conditions, the Halloween storms of 2003, and solar minimum conditions. These results can be compared to observations from the SOLSTICE I experiment that flew on the Upper Atmosphere Research Satellite (UARS) during the decline of the previous solar cycle as well as with currently operating missions. We will discuss similarities and differences between the two solar cycles in the long-term ultraviolet irradiance record. 相似文献
7.
C. Bouratzis P. Preka-Papadema X. Moussas C. Alissandrakis A. Hillaris 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
A complex radio event was observed on January 17, 2005 with the radio-spectrograph ARTEMIS-IV, operating at Thermopylae, Greece; it was associated with an X3.8 SXR flare and two fast Halo CMEs in close succession. We present dynamic spectra of this event; the high time resolution (1/100 s) of the data in the 450–270 MHz range, makes possible the detection and analysis of the fine structure which this major radio event exhibits. The fine structure was found to match, almost, the comprehensive Ondrejov Catalogue which it refers to the spectral range 0.8–2 GHz, yet seems to produce similar fine structure with the metric range. 相似文献
8.
I.N. Myagkova S.N. Kuznetsov V.G. Kurt B.Yu. Yuskov V.I. Galkin E.A. Muravieva K. Kudela 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(12):1929-1934
The Russian solar observatory CORONAS-F was launched into a circular orbit on July 31, 2001 and operated until December 12, 2005. Two main aims of this experiment were: (1) simultaneous study of solar hard X-ray and γ-ray emission and charged solar energetic particles, (2) detailed investigation of how solar energetic particles influence the near-Earth space environment. The CORONAS-F satellite orbit allows one to measure both solar energetic particle dynamics and variations of the solar particle boundary penetration as well as relativistic electrons of the Earth’s outer radiation belt during and after magnetic storms. We have found that significant enhancements of relativistic electron flux in the outer radiation belt were observed not only during strong magnetic storms near solar maximum but also after weak storms caused by high speed solar wind streams. Relativistic electrons of the Earth’s outer radiation belt cause volumetric ionization in the microcircuits of spacecraft causing them to malfunction, and solar energetic particles form an important source of radiation damage in near-Earth space. Therefore, the present results and future research in relativistic electron flux dynamics are very important. 相似文献
9.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(4):1893-1899
Coronal spectroscopy has pushed forward the understanding of physical processes in all phenomena on the Sun. In this review we concentrate specifically on plasma parameters measured in sources of the slow solar wind in active regions and the early phases of solar flares. These topics are a key part of the science goals of the Solar Orbiter mission (Müller et al., 2020) which has been designed to probe what drives the solar wind and solar transients that fill the heliosphere.Active regions, outside of flaring, have general characteristics that include closed loops showing red-shifted (down-flowing plasma), and the edges of the active regions showing blue-shifted (upflowing plasma). Constraining and understanding the evolution, behaviour and cause of the flows has been developed in the past years and are summarised. Of particular importance is the upflowing plasma which, in some cases, can contribute to the slow solar wind, and this review concentrates on recent results on this topic.The early phases of solar flares and their energy sources are not yet fully understood. For decades, there has been a huge interest in pin-pointing the trigger of a solar flare. Coronal spectroscopy has revealed small-scale dynamics that occurs tens of minutes before the flare begins. The understanding of the trigger is key to improving flare predictions in the future, as well as understanding the physical processes.Finally we look to the future of coronal spectroscopy, with new instruments and methodologies being developed that build on the current knowledge, and will improve significantly our physical understanding of processes at all scales on the Sun. 相似文献
10.
I.V. Arkhangelskaja Yu.D. KotovA.I. Arkhangelsky A.S. Glyanenko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The count rate temporal profiles and energy spectra of the solar flares January 15, 17, 20 2005 in hard X-ray and gamma energy bands by data of AVS-F apparatus onboard CORONAS-F satellite are discussed. The energy spectra of these solar flares contain positron line and neutron capture line. Solar flares of January 17 and 20 spectra also contain some nuclear lines. Thin structure with characteristic timescales of 33–92 s is presented on flares temporal profiles in energy bands corresponding to the observed spectral features, which are confirmed by periodogram analysis (confidence level is 99%). 相似文献
11.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(4):1900-1906
The M1.5-class flare and associated coronal mass ejection (CME) of 16 February 2011 was observed with the Extreme ultraviolet Imaging Spectrometer on board the Hinode spacecraft. Spray plasma associated with the CME is found to exhibit a Doppler blue-shift of 850 km s?1 – one of the largest values reported from spectroscopy of the solar disk and inner corona. The observation is unusual in that the emission line (Fe xii 193.51 Å) is not observed directly, but the Doppler shift is so large that the blue-shifted component appears in a wavelength window at 192.82 Å, intended to observe lines of O v, Fe xi and Ca xvii. The Fe xii 195.12 Å emission line is used as a proxy for the rest component of 193.51 Å. The observation highlights the risks of using narrow wavelength windows for spectrometer observations when observing highly-dynamic solar phenomena. The consequences of large Doppler shifts for ultraviolet solar spectrometers, including the upcoming Multi-slit Solar Explorer (MUSE) mission, are discussed. 相似文献
12.
13.
O.S. Yakovchouk I.S. Veselovsky K. Mursula 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
We present and discuss here the first version of a data base of extreme solar and heliospheric events. The data base contains now 87 extreme events mostly since 1940. An event is classified as extreme if one of the three critical parameters passed a lower limit. The critical parameters were the X-ray flux (parameter R), solar proton flux (parameter S) and geomagnetic disturbance level (parameter G). We find that the five strongest extreme events based on four variables (X-rays SEP, Dst, Ap) are completely separate except for the October 2003 event which is one the five most extreme events according to SEP, Dst and Ap. This underlines the special character of the October 2003 event, making it unique within 35 years. We also find that the events based on R and G are rather separate, indicating that the location of even extreme flares on the solar disk is important for geomagnetic effects. We also find that S = 3 events are not extreme in the same sense as R > 3 and G > 3 events, while S = 5 events are missing so far. This suggests that it might be useful to rescale the classification of SEP fluxes. 相似文献
14.
J. Sylwester B. Sylwester E. Landi K.J.H. Phillips V.D. Kuznetsov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The RESIK is a high sensitivity, uncollimated bent crystal spectrometer which successfully operated aboard Russian CORONAS-F solar mission between 2001 and 2003. It measured for the first time in a systematic way solar soft X-ray spectra in the four wavelength channels from 3.3 Å to 6.1 Å. This range includes characteristic strong lines of H- and He-like ions of K, Ar, Cl, Si, S and Al in the respective spectral channels. A distinguishing feature of RESIK is its possibility of making reliable measurements of the continuum radiation in flares. Interpretation of line and the continuum intensities observed in vicinity of respective strong lines provides diagnostics of plasma temperature and absolute abundances of K, Ar, Cl, S, Si and Al in several flares. We analyzed the observed intensities of spectral lines and the nearby continuum using the CHIANTI v5.2 atomic data package. A specific, so-called “locally isothermal” approach has been used in this respect allowing us to make not only flare-averaged abundance estimates, but also to look into a possible variability of plasma composition during the course of flares. 相似文献
15.
Thomas N. Woods Phillip C. Chamberlin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The solar soft X-ray (XUV; 1–30 nm) radiation is highly variable on all time scales and strongly affects the ionosphere and upper atmosphere of Earth, Mars, as well as the atmospheres and surfaces of other planets and moons in the solar system; consequently, the solar XUV irradiance is important for atmospheric studies and for space weather applications. While there have been several recent measurements of the solar XUV irradiance, detailed understanding of the solar XUV irradiance, especially its variability during flares, has been hampered by the lack of high spectral resolution measurements in this wavelength range. The conversion of the XUV photometer signal into irradiance requires the use of a solar spectral model, but there has not been direct validation of these spectral models for the XUV range. For example, the irradiance algorithm for the XUV Photometer System (XPS) measurements uses multiple CHIANTI spectral models, but validation has been limited to other solar broadband measurements or with comparisons of the atmospheric response to solar variations. A new rocket observation of the solar XUV irradiance with 0.1 nm resolution above 6 nm was obtained on 14 April 2008, and these new results provide a first direct validation of the spectral models used in the XPS data processing. The rocket observation indicates very large differences for the spectral model for many individual emission features, but the differences are significantly smaller at lower resolution, as expected since the spectral models are scaled to match the broadband measurements. While this rocket measurement can help improve a spectral model for quiet Sun conditions, many additional measurements over a wide range of solar activity are needed to fully address the spectral model variations. Such measurements are planned with a similar instrument included on NASA’s Solar Dynamics Observatory (SDO), whose launch is expected in 2009. 相似文献
16.
W.Q. Gan Y.P. Li L.I. Miroshnichenko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):908-913
The footpoint motions of flare hard X-ray (HXR) sources are directly related to the reconnection scenario of a solar flare. In this work, we tried to extract the information of footpoint motions for a number of flares observed with RHESSI. We found that the RHESSI flare results of the footpoint motions strongly support the classification proposed from the observations of YOHKOH/HXT. Furthermore, it is found that a flare can consist of two types of footpoint motions. We discussed the connections of the footpoint motions with the two-dimensional reconnection models. 相似文献
17.
Recent advances in observations and modeling of the solar ultraviolet and X-ray spectral irradiance 总被引:1,自引:0,他引:1
Thomas N. Woods 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
There have been significant, recent advances in understanding the solar ultraviolet (UV) and X-ray spectral irradiance from several different satellite missions and from new efforts in modeling the variations of the solar spectral irradiance. The recent satellite missions with solar UV and X-ray spectral irradiance observations include the X-ray Sensor (XRS) aboard the series of NOAA GOES spacecraft, the Upper Atmosphere Research Satellite (UARS), the SOHO Solar EUV Monitor (SEM), the Solar XUV Photometers (SXP) on the Student Nitric Oxide Explorer (SNOE), the Solar EUV Experiment (SEE) aboard the Thermosphere, Ionosphere, Mesosphere, Dynamics, and Energetics (TIMED) satellite, and the Solar Radiation and Climate Experiment (SORCE) satellite. The combination of these measurements is providing new results on the variability of the solar ultraviolet irradiance throughout the ultraviolet range shortward of 200 nm and over a wide range of time scales ranging from years to seconds. The solar UV variations of flares are especially important for space weather applications and upper atmosphere research, and the period of intense solar storms in October–November 2003 has provided a wealth of new information about solar flares. The new efforts in modeling these solar UV spectral irradiance variations range from simple empirical models that use solar proxies to more complicated physics-based models that use emission measure techniques. These new models provide better understanding and insight into why the solar UV irradiance varies, and they can be used at times when solar observations are not available for atmospheric studies. 相似文献
18.
19.
I.V. Chashei A.I. Efimov L.N. Samoznaev D. Plettemeier M.K. Bird 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(12):2195-2198
Measurements of the motion of plasma density inhomogeneities in the inner solar wind are presented. The speeds were estimated using a cross-correlation analysis of radio frequency fluctuations of the Galileo spacecraft measured simultaneously at widely spaced ground stations. The radial projections of the correlation baselines on the pattern plane were of the order of several thousand kilometers. For cross-correlation functions calculated with comparatively short averaging times, we find that a pronounced two-velocity configuration is occasionally observed over the range of heliocentric distances 20 R < R < 40 R. The typical mean speed for such observations is about 300–400 km/s and the difference between the two predominant speeds is about 150–200 km/s. These results may indicate that the density fluctuations are associated with slow magnetosonic waves propagating in opposite directions at the local speed of sound in the reference frame moving with the mean solar wind speed. Quite reasonable estimates of the solar wind speed and speed of sound are obtained from this model. Another possible explanation of the two-velocity structures is that two independent solar wind streams are present simultaneously along different segments of the radio ray path. 相似文献
20.
Francisco C.R. Fernandes José Augusto S.S. Dutra Rafael D. Cunha da Silva Hanumant S. Sawant 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
This work presents the analysis of five fine structures in the solar radio emission, observed between June 2000 and October 2001 by the Brazilian Solar Spectroscope (BSS), in the decimeter frequency band of 950–2500 MHz. Based on their morphological characteristics identified in the dynamic spectra, the fine structures had been classified as type U-like or type J-like bursts. Such emissions are variants of the type III bursts. They support the hypothesis of generation by plasma emission mechanism, from interaction of electron beams accelerated during solar flares, propagating along closed magnetic structures, within the trapped plasma of the solar corona. The spectral and temporal characteristics of the five fine structures had been obtained from the dynamic spectra and the parameters of the agent and the emitting source have been determined, assuming both fundamental and harmonic emissions. The analysis revealed the flux density of the structures is less than 20–80 s.f.u. For assumption of harmonic emission, the interval of values for the source parameters estimated are: the loop size is (0.3–5.1) × 1010 cm; the electron beam velocity is in the range of 0.16–0.53 c; the temperature of coronal loop top is of the order of (0.25–1.55) × 107 K; and the low limit for the magnetic field is of 7–26 G. These results are in agreement with previous determinations reported in the literature. 相似文献