共查询到20条相似文献,搜索用时 0 毫秒
1.
全天空流星雷达相位差监测分析方法研究 总被引:2,自引:0,他引:2
介绍了一种直接利用流星观测数据, 根据流星的时空分布特性和天线的空间布阵关系建立数学模型, 对全天空流星雷达各天线通道的相位差进行监测分析和估算的新方法. 通过分析全天空流星雷达的流星观测数据, 获得了流星时空分布特性, 天线阵相位差变化对流星空间分布的影响, 特别是流星高度分布的标准差特性与各天线相位差的关系. 在此基础上, 模拟研究了利用流星高度分布的标准差来估算天线相位差的偏差, 并应用于中国三亚地区全天空流星雷达进行相位差监测分析和校正. 结果表明, 新方法无需任何附加硬件, 通过日常观测数据就能对某一通道的相位差变化或多个通道的相位差变化进行估算和分析,相位差监测精度优于2°. 对这些相位差变化进行校正, 可有效提高全天空流星雷达对流星的定位测量精度. 相似文献
2.
流星余迹能够被后向散射雷达观测到, 利用观测结果, 可以分析和研究流星的空间分布和时间变化规律. 同时, 利用流星空间分布还可以进行空间碎片的研究. 基于标准理论, 对影响雷达回波功率的主要因素, 例如如双极扩散、余迹的初始半径、流星的有限速度, 以及雷达的脉冲重复频率在不同频率和速度下进行了数值分析和计算, 得到的流星衰减时间及双极扩散系数的观测结果与理论结果一致. 通过对昆明流星雷 达观测到的571632个流星进行统计分析, 得到了流星高度分布统计模型, 并利用该模型的分析结果与不同月份流星的观测数据进行对比, 结果比较一致. 相似文献
3.
利用中国廊坊站(39.4°N,116.7°E)流星雷达在2012年4月1日至2013年3月31日的水平风场观测数据,分析廊坊上空80~100km的中间层与低热层(Mesosphere and Lower Thermosphere,MLT)大气平均纬向风和经向风的季节变化特征.结果表明平均纬向风和经向风都表现出明显的季节变化特征.平均纬向风在冬季MLT盛行西风,极大值位于中间层顶,随高度增加西风减弱;在夏季中间层为东风,低热层为强西风,风向转换高度约为82km.平均经向风在冬季以南风为主,在夏季盛行北风.纬向风和经向风在春秋两季主要表现为过渡阶段.流星雷达观测结果与WACCM4模式和HWM93模式模拟的气候变化特点基本一致,但WACCM4模式纬向风和经向风风速偏大,而HWM93模式纬向风和经向风风速偏小. 相似文献
4.
5.
采用电流密度卷积FDTD算法(JEC-FDTD)计算了等离子体天线的散射特性, 分析了等离子体天线处于工作状态时等离子体参数(密度、碰撞频率)及天线外部约束腔体对天线雷达散射截面(RCS)的影响. 数值结果表明, 等离子体天线的RCS会随等离子体密度的减小及碰撞频率的增大而减小. 而约束腔体只有在高频段时才会对等离子体天线的RCS值产生较大的影响. 因此, 在不影响天线性能的情况下, 可以根据信号频率调节等离子体参数、选取合适的腔体材料以达到增强等离子体天线隐身性能的目的. 相似文献
6.
P. L. Pritchett 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(12):35-38
A two-dimensional electromagnetic simulation model is used to investigate the production of whistler waves in connection with electron beam experiments in space. The spectrum is observed to peak near 0.7 ωe, and the conversion efficiency of beam energy to whistler waves is about 5 × 10−5. The whistlers can be trapped in a density trough extending out from the spacecraft and experience ducted propagation. 相似文献
7.
An analysis of the data from the Wind and IMP-8 spacecraft revealed that a slow solar wind, flowing in the heliospheric plasma sheet, represents a set of magnetic tubes with plasma of increased density (N > 10cm-3 at the Earth's orbit). They have a fine structure at several spatial scales (fractality), from 2°-3°(at the Earth's orbit, it is equivalent to 3.6-5.4h, or (5.4-8.0)×106km) to the minimum about 0.025°, i.e. the angular size of the nested tubes is changed nearly by two orders of magnitude. The magnetic tubes at each observed spatial scale are diamagnetic, i.e. their surface sustains a flow of diamagnetic (or drift) current that decreases the magnetic field within the tube itself and increases it outside the tube. Furthermore, the value of β= 8π[N(Te + Tp)]/B2 within the tube exceeds the value of βoutside the tube. In many cases total pressure P = N(Te + Tp) + B2/8πis almost constant within and outside the tubes at any one of the aforementioned scales. 相似文献
8.
S.C. Chakravarty 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The Indian MST radar facility at Gadanki (13.5°N, 79.2°E) has been utilised to study the propagation of gravity waves from the troposphere/lower stratosphere to the mesosphere and their interaction with the radar backscattered signal variations. The main objective is to correlate vertically propagating gravity waves derived from the tropospheric velocity fields with the dynamics of mesospheric scattering centres. The tropospheric wind velocities and signal strengths over the entire height range have been subjected to power spectral and wavelet analysis to determine the predominant wave periods/amplitudes and the coupling between the lower atmosphere and mesosphere. Results show that (a) the gravity waves are clearly detectable near tropopause heights, (b) while relatively higher period gravity waves (20–50 min) interact with mesospheric scattering centres, the lower period waves (<20 min) are absorbed in the troposphere itself, (c) the mesospheric scattering layers are affected by gravity waves of complementary periods. 相似文献
9.
T. Takada R. Nakamura Y. Asano W. Baumjohann A. Runov M. Volwerk T.L. Zhang Z. Vörös K. Keika B. Klecker H. Rème E.A. Lucek C. Carr H.U. Frey 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(10):1585-1592
We examined two consecutive plasma sheet oscillation and dipolarization events observed by Cluster in the magnetotail, which are associated with a pseudo-breakup and a small substorm monitored by the IMAGE spacecraft. Energy input from the solar wind and an associated enhancement of the cross-tail current lead to current sheet thinning and plasma sheet oscillations of 3–5 min periods, while the pseudo-breakups occur during the loading phase within a spatially limited area, accompanied by a localized dipolarization observed by DSP TC1 or GOES 12. That is, the so-called “growth phase” is a preferable condition for both pseudo-breakup and plasma sheet oscillations in the near-Earth magnetotail. One of the plasma sheet oscillation events occurs before the pseudo-breakup, whereas the other takes place after pseudo-breakup. Thus there is no causal relationship between the plasma sheet oscillation events and pseudo-breakup. As for the contribution to the subsequent small substorm, the onset of the small substorm took place where the preceding plasma sheet oscillations can reach the region. 相似文献
10.
位于波多黎各的Arecibo非相干雷达可以获得低电离层电子和离子密度, 利用此非相干雷达数据对中纬度低电离层的运动特征进行研究. 得到了电子密度随时间和高度的变化 情况, 结果显著呈现出周日变化特征, 并分析了电子密度随高度的变化规律. 进一步对数据进行频谱分析, 深入研究低电离层电子密度的周日变化效应. 得到电子密度的高度剖面, 发现从F层底部到E层有明显的等离子体沉降. 低电离层的层结构特征及电子密度变化表明, 在该区域还存在不同程度的等离子体扰动, 由此对低电离层的作用因素 进行分析, 认为大气潮汐或声重波可能对低电离层产生扰动, 即低电离层与大气存在一定程度的耦合作用. 相似文献
11.
C. Jacobi G. Stober D. Kürschner 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(9):1429-1434
Scale height, H, estimates are calculated from the decrease/increase of ionospheric virtual reflection heights of low-frequency (LF) radio waves at oblique incidence in suitably defined morning intervals around sunrise during winter months. The day-to-day variations of H qualitatively agree with daily mean temperature variations around 90 km from meteor radar measurements. Since mesospheric long-period temperature variations are generally accepted to be the signature of atmospheric planetary waves, this shows that LF reflection height measurements can be used for monitoring the dynamics of the upper middle atmosphere. The long-term variations of monthly mean H estimates have also been analysed. There is no significant trend, which is in agreement with other measurements of mesopause region temperature trends. 相似文献
12.
Stanislav Klimov Csaba Ferencz László Bodnár Péter Szegedi Péter Steinbach Vladimir Gotlib Denis Novikov Serhiy Belyayev Andrey Marusenkov Orsolya Ferencz Valery Korepanov János Lichtenberger Dániel Hamar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The main goals of the Chibis-M mission are the testing of a new micro-satellite technology, the study of new physical processes related to lightning activity and the verification of possible monitoring techniques of Space Weather phenomena. In frames of the Chibis-M mission an electromagnetic wave complex MWC is installed on board of the satellite composed of electromagnetic sensors and SAS3 measuring unit. The obtained data show that the scientific instrumentation operates properly and produces interesting information. Here we present the first results of the first year of operation of the MWC in the ELF–VLF bands in different operation modes. An important conclusion is that basing on the experience of the first year it is possible to realize an effective and reliable Space Weather monitoring system using micro-satellites and simultaneously operating ground support equipments. 相似文献
13.
利用武汉流星雷达2002年2月20日至2003年11月10日的观测数据,研究了武汉上空中间层-低热层(MLT)中的准16日波,即周期范围在12—20天的行星波。分析结果表明,16日波的纬向成分通常比经向成分要强.(1)在2002年和2003年,波振幅最强都出现在当年的秋季(约9月10日—10月10日).Lomb-Scargle(L-S)谱分析得到振幅最大值约为16m/s.2002年夏季出现了同年次最强的波动,但2003年没有发现这一现象.两年的冬季都没有出现强的16日波.(2)2002年,在86—98km处波动较强,最大振幅(约16m/s)出现在90km、94km处,而2003年低高度的波动要比较高高度的波动强.武汉上空MLT中,秋季的16日波是能量上传的波动,即它的源在较低的大气层.2002年夏季的波动的能量是下行的,波源可能在南半球. 相似文献
14.
P. Alexander R. Ruscica A.A. Sörensson C.G. Menéndez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Adequate representations of diverse dynamical processes in general circulation models (GCM) are necessary to obtain reliable simulations of the present and the future. The parameterization of orographic gravity wave drag (GWD) is one of the critical components of GCM. It is therefore convenient to evaluate whether standard orographic GWD parameterizations are appropriate. One alternative is to study the generation of gravity waves (GW) with horizontal resolutions that are higher than those used in current GCM simulations. Here we assess the seasonal pattern of topographic GW momentum flux (GWMF) generation for the late 20th and 21st centuries in a downscaling using the Rossby Centre regional atmospheric model under the Intergovernmental Panel on Climate Change A1B emission conditions. We focus on one of the world’s strongest extra-tropical GW zones, the Andes Mountains at mid-latitudes in the Southern Hemisphere. The presence of two GCM sub-grid scale structures locally contributing to GWMF (one positive and one negative) is found to the East of the mountains. For the late 21st century the strength of these structures during the GW high season increases around 23% with respect to the late 20th century, but the GWMF average over GCM grid cell scales remains negative and nearly constant around −0.015 Pa. This constitutes a steady significant contribution during GW high season, which is not related to the GWMF released by individual sporadic strong GW events. This characteristic agrees with the fact that no statistically significant variation in GWMF at source level has been observed in recent GCM simulations of atmospheric change induced by increases in greenhouse gases. 相似文献
15.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(10):1868-1875
Fluorescence detectors of ultra high energy cosmic rays (UHECR) allow to record not only the extensive air showers, initiated by the UHECR particles, but also to detect light, produced by meteors and by the fast dust grains. It is shown that the fluorescence detector operated at the mountain site can register signals from meteors with kinetic energy threshold of about 25 J (meteor mass ∼ 5 × 10−6 g, velocity ∼ 3 × 106 cm/s). The same detector might be used for recording of the dust grains of smaller mass (of about 10−10 g) but with velocity 109 cm/s, close to the light velocity (sub-relativistic dust grains). The light signal from a sub-relativistic dust grain is expected in much shorter time scale (∼0.001 s), in comparison with the meteor signal (∼0.1–1 s), and much longer than duration of the UHECR signals (tens of μs). The fluorescence detector capable to register various phenomena: from meteors to UHECR – should have a variable pixel and selecting system integration time. A study of the new phenomenon of sub-relativistic grains will help to understand the mechanism of particle and dust grain acceleration in astrophysical objects (in SN explosions, for example). 相似文献
16.
17.
Elías M. Lau Hiroyuki Iimura Scott E. Palo Susan K. Avery James P. Avery Chunmei Kang Nikolai A. Makarov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
A new meteor radar system was installed at the Amundsen–Scott station South Pole in 2001 to further the understanding of the dynamics of the Antarctic region. The antenna array consists of four yagis pointed along the 0°, 90°, 180°, and 270° meridians and five folded crossed dipoles arranged in a cross configuration and operating as an interferometer to provide position measurements for the detected radio meteors. The four yagis are time division multiplexed and used for both transmitting and receiving while the five folded crossed dipoles are only used for reception. The current arrangement of data acquisition (DAQ) systems at the South Pole allows the collection of meteors in a configuration similar to the previous meteor radar system that operated at the South Pole in the mid 1990s while also using an interferometer to accurately determine the meteor positions in the sky, which enables the determination of the vertical structure of the observed waves. This has been accomplished through the use of two DAQ and post-processing systems: COBRA (Colorado Obninsk radar) connected to the yagis and MEDAC (meteor echo detection and collection) connected to the folded crossed dipoles. With two separate DAQ systems operating in parallel we have the ability to directly compare the results and understand the inherent variability in the derived scientific results based on different system architectures and processing assumptions. The impact of operating a system without an interferometer on the amplitudes and phases of the observed wave components is considered. We find that the lack of altitude resolution of the COBRA DAQ system leads to an underestimation of the amplitude of the s = 1 component of the semidiurnal tide of ∼20% during the summer months. 相似文献
18.
A.A. Berezhnoy 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The column densities of impact-produced metal atoms in the exosphere during the peaks of activity of the main meteor showers – Geminids, Quadrantids and Perseids – and during quiet periods are estimated. The Na supply rate is estimated to be 2 × 104, 3 × 103, 104, and 2 × 104 atoms cm−2 s−1 for sporadic meteoroids, Perseid, Geminid, and Quadrantid meteor showers, respectively. A low upper limit on Ca in the lunar exosphere is explained by the condensation of Ca into dust grains during expansion of the cooling impact-produced vapor cloud. The chemical composition of gas-phase species released to the lunar exosphere during meteoroid impacts has been estimated. Most impact-produced molecules that contain metals are destroyed by solar photons while on ballistic trajectories. Energies of Na, K, Ca, and Mg atoms produced via photolysis of the respective monoxides are estimated to be 0.4, 0.35, 0.6, and 0.45 eV, respectively. The relative content of impact-produced Na and K atoms is maximal at altitudes of about 1000–2000 km and during the main meteor showers, lunar eclipses, and passages of the Moon through the Earth’s magnetosphere. 相似文献
19.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(1):298-305
We present an analysis of the response of quasi-10-day waves (Q10DWs) to the sudden stratospheric warming (SSW) event which occurred on March 23, 2020. The Q10DWs are observed in the mesosphere and lower thermosphere (MLT) region by three meteor radars, which are located at middle latitudes along the 120°E meridian from Mohe (MH, 53.5°N, 122.3°E), Beijing (BJ, 40.3°N, 116.2°E), to Wuhan (WH, 30.5°N, 114.6°E). The Q10DWs reveal similar temporal and altitudinal variations during the SSW in the MLT region at the three stations. The activities of Q10DWs are also captured in the temperature measurements from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite in the MLT region. Further analysis of the Q10DW phases indicates that the Q10DWs might be in situ generated due to mesospheric instabilities at higher latitudes around MH and then propagate southward to lower latitudes at BJ and WH. The atmospheric instabilities are not directly responsible for the excitations of Q10DWs at lower latitudes, while the observed equatorward propagation of the Q10DWs is important. Our result provides the observational evidence for latitudinal couplings in the MLT region after the SSW onset, which is achieved by southward propagating planetary waves in the MLT region. 相似文献
20.
V.P. Tritakis Yu.V. Pisanko A.G. Paliatsos G.K. Korbakis P.Th. Nastos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Relativistic electrons (with energies >150 keV) which originate in the outer radiation belt and detected by the Russian ‘Meteor’ series of satellites have been correlated with the atmospheric total ozone data compiled by almost 90 stations located around the world within the latitude zone 40°–70°N. In more than 60% of the stations examined we have detected a clear decrease of the ozone 3–5 days after the electron flux excess. A numerical model has been applied to approximate this effect based on relativistic electron initiated nitric oxides creation in the upper mesosphere with subsequent atmospheric transport (both vertical and horizontal) towards the upper stratosphere. A first attempt of local and temporal prediction of ozone depletion because of energetic electrons impact in the middle atmosphere has been illustrated. 相似文献