首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intensity of cosmic-ray electrons is only ∼1% of the protons at 10 GeV, and decreases very rapidly with energy to be ∼0.1% of protons at 1 TeV. Nevertheless, electrons in cosmic-rays have unique features, complementary to all other cosmic-ray nucleonic components, because they enable us to find the origins of cosmic-rays and the properties of their propagation mechanisms in the Galaxy. High-energy electrons lose energy by synchrotron and inverse Compton processes during the propagation in the Galaxy. Since the energy loss rate by these processes is proportional to the square of energy, TeV electrons accelerated in the sources at distances larger than ∼1 kpc, or ages greater than a few 105 yr, cannot reach the solar system. This suggests that some nearby sources leave unique signatures in the form of identifiable structures in the energy spectrum of TeV electrons, and show increases of the flux towards the sources. In this paper, I review the past observations of high-energy cosmic-ray electrons and discuss their astrophysical significance.  相似文献   

2.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV–3 TeV is presented. The angular resolution of the instrument, 1–2° at Eγ ∼ 100 MeV and ∼0.01° at Eγ > 100 GeV, its energy resolution ∼1% at Eγ > 100 GeV, and the proton rejection factor ∼106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.  相似文献   

3.
The evidence for a black hole located at the dynamical center of the Milky Way and identified with the unusual radio source, Sgr A1, is now very compelling. Proper motion and radial velocity surveys of stars clearly demonstrate the presence of a non-luminous concentration of 2.6 × 106 M within a volume of radius ∼0.01 pc centered on Sgr A1. At present, the accretion rate onto this object is rather small, leading to a total accretion luminosity at radio through far-IR wavelengths < 103 L. The accreted material apparently originates in the winds of nearby massive stars. However, neither the stellar nor the gaseous environments are static. The surrounding cluster of massive stars, most lying well within a parsec, is only a few million years old, and is destined to fade substantially within another 107 years. How did such a cluster form in the immediate and tidally stressed vicinity of a supermassive black hole? The circumnuclear disk of gas, which presently has an inner radius of 1 pc, seems destined to migrate inwards and eventually cause a much higher accretion rate onto Sgr A1, with a consequent flurry of new activity. Because the young stars and gas in the vicinity of the black hole interact with each other, the episodes of recurrent activity there can be described in terms of a limit cycle, which effectively controls the growth of the central black hole. In addition to describing the steps of this cycle, we identify several key observations which serve as potential clues to the past activity not only of our Galactic center, but to the activity of gas-rich nuclei in general.  相似文献   

4.
Observations of the Galactic center region with the H.E.S.S. telescopes have established the existence of a steady, extended source of gamma-ray emission coinciding with the position of the super massive black hole Sgr A*. This is a remarkable finding given the expected presence of dense self-annihilating Dark Matter in the Galactic center region. The self-annihilation process is giving rise to gamma-ray production through hadronization including the production of neutral pions which decay into gamma-rays but also through (loop-suppressed) annihilation into final states of almost mono-energetic photons. We study the observed gamma-ray signal (spectrum and shape) from the Galactic center in the context of Dark Matter annihilation and indicate the prospects for further indirect Dark Matter searches with H.E.S.S.  相似文献   

5.
The question of the origin of cosmic rays and other questions of astroparticle and particle physics can be addressed with indirect air-shower observations above 10 TeV primary energy. We propose to explore the cosmic ray and γ-ray sky (accelerator sky) in the energy range from 10 TeV to 1 EeV with the new ground-based large-area wide angle (ΔΩ ∼ 0.85 sterad) air-shower detector HiSCORE (Hundredi Square-km Cosmic ORigin Explorer). The HiSCORE detector is based on non-imaging air-shower Cherenkov light-front sampling using an array of light-collecting stations. A full detector simulation and basic reconstruction algorithms have been used to assess the performance of HiSCORE. First prototype studies for different hardware components of the detector array have been carried out. The resulting sensitivity of HiSCORE to γ-rays will be comparable to CTA at 50 TeV and will extend the sensitive energy range for γ-rays up to the PeV regime. HiSCORE will also be sensitive to charged cosmic rays between 100 TeV and 1 EeV.  相似文献   

6.
The CALorimetric Electron Telescope, CALET, mission is proposed for the observation of high-energy electrons and gamma-rays at the Exposed Facility of the Japanese Experiment Module on the International Space Station. The CALET has a capability to observe the electrons (without separation between e+ and e) in 1 GeV–10 TeV and the gamma-rays in 20 MeV–several TeV with a high-energy resolution of 2% at 100 GeV, a good angular resolution of 0.06 degree at 100 GeV, and a high proton-rejection power of nearly 106. The CALET has a geometrical factor of 1 m2sr, and the observation period is expected for more than three years. The very precise measurement of electrons enables us to detect a distinctive feature in the energy spectrum caused from WIMP dark matter in the Galactic halo. The excellent energy resolution of CALET, which is much better than GLAST or air Cherenkov telescopes over 10 GeV, enables us to detect gamma-ray lines in the sub-TeV region from WIMP dark matter annihilations. The CALET has, therefore, a unique capability to search for WIMP dark matter by the hybrid observations of electrons and gamma-rays.  相似文献   

7.
We address the problem of interacting relativistic current sheets in self-consistent kinetic plasma simulations within the framework of the Particle-In-Cell model. The interaction is enforced in head-on collisions of up to 10 current sheets at relativistic bulk speeds. The simulations are motivated by the general problem of Poynting flux dissipation in ‘striped wind’ configurations presumably governing the relativistic outflows pervasive in pulsar winds and gamma-ray bursts. We identify the generation of non-thermal particles and formation of a stable power-law shape in the particle energy distributions f(γ) dγ ∝ γs dγ. In 1D, a spectral index s ∼ 2 is observed and attributed to a stochastic Fermi-type acceleration mechanism. In 2D, the generic index of s ∼ 3–4 is retained as in previous simulations of individual current sheets. Whereas in 2D the high energy cut-off is constrained by the limited dissipation of magnetic energy, in 1D the process converts the bulk motion of current sheets towards directed particle momentum of an exclusive class of non-thermal particles.  相似文献   

8.
PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV–700 GeV, electrons 50 MeV–400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV–190 GeV), positrons (50 MeV–270 GeV) and search for antimatter (with a precision of the order of 10−8). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15th 2006 in a 350 × 600 km orbit with an inclination of 70°. The detector consists of a permanent magnet spectrometer core to provide rigidity and charge sign information, a Time-of-Flight system for velocity and charge information, a silicon–tungsten calorimeter and a neutron detector for lepton/hadron identification. An anticounter system is used off-line to reject false triggers coming from the satellite. In self-trigger mode the calorimeter, the neutron detector and a shower tail catcher are capable of an independent measure of the lepton (e+ + e) component up to 2 TeV. In this work we focus on the first months of operations of the experiment during the commissioning phase.  相似文献   

9.
Cosmic-ray electrons have been observed in the energy region from 10 GeV to 1 TeV with the PPB-BETS by a long duration balloon flight using a Polar Patrol Balloon (PPB) in Antarctica. The observation was carried out for 13 days at an average altitude of 35 km in January 2004. The PPB-BETS detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillators inserted between lead plates. In the study of cosmic-ray electrons, there have been some suggestions that high-energy electrons above 100 GeV are a powerful probe to identify nearby cosmic-ray sources and search for particle dark matter. In this paper, we present the energy spectrum of cosmic-ray electrons in the energy range from 100 GeV to 1 TeV at the top of atmosphere, and compare our spectrum with the results from other experiments.  相似文献   

10.
Recent gamma-ray observations of two Seyfert Galaxies are interpreted in terms of electron-positron pair annihilation radiation. A simplified scenario is envisaged in which a massive black hole is accreting material from an optically thin disk characterized by a hot (T > 109 °K) e± plasma. At these very high temperatures the 511 keV line emission loses its characteristic features to become both broadened and blue shifted. Observational X and gamma-ray data are used to investigate the possibility that the “bump” in the spectral emission at photon energies E ~ 1 MeV observed in Seyfert galaxies may be due to this annihilation feature. In particular the self consistency of the parameters estimated from the gamma-ray data is explored. Furthermore we investigate the possibility that this annihilation feature may be mirrored in the cosmic diffuse background and, under this assumption, we calculate the maximum temperature of the annihilation region and the average annihilation rate for Seyfert galaxies.  相似文献   

11.
The solar flare of January 20, 2005 (X7.1, 06:36–07:26 UT, maximum at 07:01 UT by the GOES soft X-ray data) was the most powerful one in January 2005 series. The AVS-F apparatus onboard CORONAS-F registered γ-emission during soft X-ray rising phase of this flare in two energy ranges of 0.1–20 MeV and 2–140 MeV. The highest γ-ray energy registered during this flare was ∼140 MeV. Six spectral features were registered in energy spectrum of this solar flare: annihilation + αα (0.4–0.6 MeV), 24Mg + 20Ne + 28Si + neutron capture (1.7–2.3 MeV), 21Ne + 22Ne + 16O + 12С (3.2–5.0 MeV), 16O (5.3–6.9 MeV), one from neutral pions decay (25–110 MeV) and one in energy band 15–21 MeV. Four of them contain typical for solar flares lines – annihilation, nuclear de-excitation and neutron capture at 1H. Spectral feature caused by neutral pions decay was registered during several flares too. Some spectral peculiarities in the region of 15–21 MeV were first observed in solar flare energy spectrum.  相似文献   

12.
We present the results of a systematic study of narrow-line Seyfert 1 galaxies (NLS1s) observed with XMM-Newton. The 2–12 keV X-ray spectra of NLS1s are well represented by a single power law with a photon index Γ ∼ 2. When this hard power law continuum is extrapolated into the low energy band, we found that all objects in our sample show prominent soft excess emission. This excess emission is well parameterized by the thermal emission expected from an optically thick accretion disk, and we found the following three peculiar features: (1) The derived disk temperatures are significantly higher than the expectation from a standard Shakura-Sunyaev accretion disk, if we assume a central mass of a black hole to be 106–8M. (2) The temperatures are distributed within narrow range (ΔkT ∼ 0.08 keV) with an average temperature of 0.18 keV in spite of the range of four orders of magnitude in luminosity (1041–45 erg s−1). (3) We found a peculiar temperature–luminosity relation, where the luminosity seems to be almost saturated in spite of the significant change in temperature, during the observations of the most luminous NLS1 PKS 0558-504. These results strongly suggest that the standard accretion disk picture is no longer appropriate in the nuclei of NLS1s. We discuss a possible origin for the soft excess component, and suggest that a slim disk may be able to explain the observational results, if the photon trapping effect is properly taken into account.  相似文献   

13.
Space weather and related ionizing radiation has been recognized as one of the main health concerns for the International Space Station (ISS) crew. The estimation of the radiation effect on humans outside the ISS requires at first order accurate knowledge of their accumulated absorbed dose rates, which depend on the global space radiation distribution, solar cycle and local variations generated by the 3D mass distribution surrounding the ISS. The R3DE (Radiation Risks Radiometer-Dosimeter for the EXPOSE-E platform) on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. A very similar instrument named R3DR for the EXPOSE-R platform worked outside the Russian Zvezda module of the ISS between March 2009 and August 2010. Both are Liulin-type detectors, Bulgarian-built miniature spectrometer-dosimeters. The acquired approximately 5 million deposited energy spectra from which the flux and absorbed dose rate were calculated with 10 s resolution behind less than 0.41 g cm−2 shielding. This paper analyses the spectra collected in 2009 by the R3DE/R instruments and the long-term variations in the different radiation environments of Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and relativistic electrons from the Outer Radiation Belt (ORB). The R3DE instrument, heavily shielded by the surrounding structures, measured smaller primary fluxes and dose rates from energetic protons from the SAA and relativistic electrons from the ORB but higher values from GCRs because of the contribution from secondary particles. The main conclusion from this investigation is that the dose rates from different radiation sources around the International Space Station (ISS) have a large special and temporal dynamic range. The collected data can be interpreted as possible doses obtained by the cosmonauts and astronauts during Extra Vehicular Activities (EVA) because the R3DE/R instruments shielding is very similar to the Russian and American space suits average shielding (,  and ). Fast, active measurements are required to assess accurately the dose accumulated by astronauts during EVA.  相似文献   

14.
We explore the capabilities of the future space science mission IXO (International X-ray Observatory) for obtaining cosmological redshifts of distant Active Galactic Nuclei (AGNs) using the X-ray data only. We first find in which regions of the X-ray luminosity (LX) versus redshift (z) plane the weak but ubiquitous Fe Kα narrow emission line can deliver an accurate redshift (δz < 5%) as a function of exposure time, using a CCD-based Wide Field Imager (IXO/WFI) as the one baselined for IXO. Down to a 2–10 keV X-ray flux of 10−14 erg cm−2 s−1 IXO/WFI exposures of 100 ks, 300 ks and 1 Ms will deliver 20%, 40% and 60% of the redshifts. This means that in a typical 18′ × 18′ IXO/WFI field of view, 4, 10 and 25 redshifts will be obtained for free from the X-ray data alone, spanning a wide range up to z ∼ 2–3 and fairly sampling the real distribution. Measuring redshifts of fainter sources will indeed need spectroscopy at other wavebands.  相似文献   

15.
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   

16.
We formulate the global propagation model of cosmic-ray electrons including the source region, which is currently considered to be supernova remnants (SNRs). The model is characterized by the escape rate of electrons from SNRs into the interstellar space. It becomes clear that the energy index of the escape rate influences the high energy side of the interstellar spectrum and makes it possible to explain the observed data up to 2 TeV in the case of source spectral index smaller than 2.2 that is expected from the radio spectrum in SNRs. The escape lifetime of electrons in SNRs is also discussed by using the ratio of the radio flux in two regions: SNRs and the Galaxy. The result shows the mean lifetime in SNRs of ∼104 yr around 1 GeV, which corresponds to the SNR age in the Sedov phase.  相似文献   

17.
We obtained new upper limits on the diffuse gamma rays from the inner Galactic (IG) and outer Galactic (OG) planes in 3–10 TeV region, using the Tibet air shower data and new Monte Carlo simulation results. A difference of the effective area of the air-shower array for observing gamma rays and cosmic rays was carefully taken into account in this analysis, resulting in that the flux upper limits of the diffuse TeV gamma rays were reduced by factors of 4.0–3.7 for 3–10 TeV than those in our previous results (Amenomori, M., Ayabe, S., Cui, S.W., et al. Observation of multi-TeV diffuse gamma rays from the Galactic plane with the Tibet air shower array. Astrophys. J. 580, 887–895, 2002.). This new result suggests that the inverse power index of the energy spectrum of source electrons responsible for generating diffuse TeV gamma rays through inverse Compton effect should be steeper than 2.2 and 2.1 for IG and OG planes, respectively, with 99%C.L.  相似文献   

18.
We analyse the results of recent measurements of nonthermal emission from individual supernova remnants (SNRs) and their correspondence to the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is shown that the theory fits these data in a satisfactory way and provides the strong evidences for the efficient CR production in SNRs accompanied by significant magnetic field amplification. Magnetic field amplification leads to considerable increase of CR maximum energy so that the spectrum of CRs accelerated in SNRs is consistent with the requirements for the formation of Galactic CR spectrum up to the energy ∼1017 eV.  相似文献   

19.
A numerical model, based on Parker’s transport equation, describing the modulation of anomalous cosmic rays and containing diffusive shock acceleration is applied. The role of radial perpendicular diffusion at the solar wind termination shock, and as the dominant diffusion coefficient in the outer heliosphere, is studied, in particular the role it plays in the effectiveness of the acceleration of anomalous protons and helium when its latitude dependence is changed. It is found that the latitudinal enhancement of radial perpendicular diffusion towards the heliospheric poles and along the termination shock has a prominent effect on the acceleration of these particles. It results in a ‘break’ in the energy spectrum for anomalous protons at ∼6.0 MeV, causing the spectral index to change from E−1.38 to E−2.23, but for anomalous helium at ∼3.0 MeV, changing the spectral index from E−1.38 to E−2.30. When approaching the simulated TS, the changes in the modulated spectra as they unfold to a ‘steady’ power law shape at energies below 50 MeV are much less prominent as a function of radial distances when radial perpendicular diffusion is increased with heliolatitude.  相似文献   

20.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock and that it has begun its merger with the local interstellar medium. The compression ratio of this shock affects galactic cosmic rays when they enter the heliosphere. Hydrodynamic (HD) models show that the compression ratio can have a significant latitude dependence; with the largest value in the nose direction of the heliosphere, becoming significantly less towards the polar regions. The modulation effects of such large latitude dependence are studied, using a well-established numerical drift and shock modulation model. We focus on computing the modulated spectra for galactic protons with emphasis on the radial and polar gradients in the equatorial plane and at a polar angle of θ = 55°, corresponding to the heliolatitude of Voyager 1. Two sets of solutions are computed and compared each time; with and without a latitude dependence for the compression ratio. All computations are done for the two magnetic field polarity cycles assuming solar minimum conditions. Including the termination shock in the model allows the study of the re-acceleration of galactic protons in the outer heliosphere. We find that for the A < 0 polarity cycle the intensity between ∼200 MeV and ∼1 GeV in the vicinity of the shock in the heliospheric equatorial plane may exceed the local interstellar value specified at the heliopause. Unfortunately, at θ = 55°, the effect is reduced. This seems not possible during an A > 0 cycle because significant modulation is then predicted between the heliopause and the termination shock, depending on how strong global gradient and curvature drifts are in the heliosheath. The overall effect of the shock on galactic protons in the equatorial plane is to reduce the total modulation as a function of radial distance with respect to the interstellar spectrum. Making the compression ratio latitude dependent enhances these effects at energies E < 200 MeV in the equatorial plane. At larger heliolatitudes these effects are even more significant. The differences in the modulation between the two drift cycles are compelling when the compression ratio is made latitude dependent but at Earth this effect is insignificant. A general result is that the computed radial gradient changes for galactic protons at and close to the TS and that these changes are polarity dependent. In line with previous work, large polarity dependent effects are predicted for the inner heliosphere and also close to the shock’s position in the equatorial plane. In contrast, at θ = 55°, the largest polarity effect occurs in the middle heliosphere (50 AU), enhanced by the latitude dependence of the compression ratio. At this latitude, the amount of proton modulation between the heliopause and the termination shock is much reduced. If galactic cosmic rays were to experience some diffusive shock acceleration over the 100–1000 MeV range at the shock, the radial gradient should change its sign in the vicinity of the shock, how large, depends on the compression ratio and the amount of drifts taking place in the outer heliosphere. The effective polar gradient shows a strong polarity dependence at Earth but this dissipates at θ = 55°, especially with increasing radial distance. This tendency is enhanced by making the compression ratio latitude dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号