首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to preserve the geosynchronous region, the Inter-Agency Space Debris Coordination Committee (IADC) proposed and endorsed a re-orbiting strategy for spacecraft at the end-of-life: they should be disposed above the synchronous altitude and passivated, to reduce the risk of inadvertent explosions. The recommended perigee altitude of the disposal orbit took into account all relevant perturbations and was a function of the expected perturbing acceleration induced by solar radiation pressure. It was intended to prevent any further interference with a properly defined geostationary protected region.  相似文献   

2.
Space debris: Assessing risk and responsibility   总被引:1,自引:0,他引:1  
We model the orbital debris environment by a set of differential equations with parameter values that capture many of the complexities of existing three-dimensional simulation models. We compute the probability that a spacecraft gets destroyed in a collision during its operational lifetime, and then define the sustainable risk level as the maximum of this probability over all future time. Focusing on the 900- to 1000-km altitude region, which is the most congested portion of low Earth orbit, we find that – despite the initial rise in the level of fragments – the sustainable risk remains below 10-310-3 if there is high (>98%) compliance to the existing 25-year postmission deorbiting guideline. We quantify the damage (via the number of future destroyed operational spacecraft) generated by past and future space activities. We estimate that the 2007 FengYun 1C antisatellite weapon test represents ≈1%1% of the legacy damage due to space objects having a characteristic size of ?10?10 cm, and causes the same damage as failing to deorbit 2.6 spacecraft after their operational life. Although the political and economic issues are daunting, these damage estimates can be used to help determine one-time legacy fees and fees on future activities (including deorbit noncompliance), which can deter future debris generation, compensate operational spacecraft that are destroyed in future collisions, and partially fund research and development into space debris mitigation technologies. Our results need to be confirmed with a high-fidelity three-dimensional model before they can provide the basis for any major decisions made by the space community.  相似文献   

3.
Missions to geosynchronous orbits remain one of the most important elements of space launch traffic, accounting for 40% of all missions to Earth orbit and beyond during the four-year period 2000–2003. The vast majority of these missions leave one or more objects in geosynchronous transfer orbits (GTOs), contributing on a short-term or long-term basis to the space debris population. National and international space debris mitigation guidelines seek to curtail the accumulation of debris in orbits which penetrate the regions of low Earth orbit and of geosynchronous orbit. The orbital lifetime of objects in GTO can be greatly influenced by the initial values of perigee, inclination, and right ascension of the orbital plane, leading to orbital lifetimes of from less than one month to more than 100 years. An examination of the characteristic GTOs employed by launch vehicles from around the world has been conducted. The consequences of using perigees above 300 km and super-synchronous apogees, typically above 40,000 km, have been identified. In addition, the differences in orbital behavior of launch vehicle stages and mission-related debris in GTOs have been investigated. Greater coordination and cooperation between space launch service providers and spacecraft designers and owners could significantly improve overall compliance with guidelines to mitigate the accumulation of debris in Earth orbit.  相似文献   

4.
The ‘particles-in-a-box’ (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508–513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation’s coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ?10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508–513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model.  相似文献   

5.
Following a feasibility study in 2000–2001 on using the EISCAT ionospheric research radars to detect centimetre-sized space debris in the frame of an ESA contract, we are now finishing a continuation study, aimed at achieving debris detection and parameter estimation in real-time. A requirement is to “piggy-back” space debris measurements on top of EISCAT’s normal ionospheric work, without interfering with that work, and to be able to handle about 500 h of measurements per year. We use a special digital receiver back-end in parallel with EISCAT’s standard receiver. We sample fast enough to correctly band-pass sample the EISCAT analog frequency band. To increase detection sensitivity, we use coherent pulse-to-pulse integration. The coherent integration is built-in in our method of parameter estimation, which we call the match function (MF) method. The method is derived from Bayesian statistical inversion, but reduces, with standard assumptions about noise and prior, to minimizing the least squares norm ∥z(t)  (R,v,a;t)∥, where z is the measured signal and {} is a set of model signals. Because the model signals depend linearly on the amplitude b, it is sufficient to maximize the magnitude of the inner product (cross correlation) between z and χ, the amplitude estimate is then determined by direct computation. The magnitude of the inner product, when properly normalized, is the MF. To construct the set of model signals, we sample the EISCAT transmission, in the same way as we sample the received signal, and apply linearly changing Doppler-shifts to it. Our initial implementation of the MF-method in 2001 was about four orders of magnitude too slow for real-time applications, but we have now gained the required speed factors. A factor of ten comes from using faster computers, another factor of ten comes from coding our key algorithms in C instead of Matlab. The largest factor, typically 100–300, comes from using a special, approximative, but in practice quite sufficient, method of finding the MF maximum. Test measurements show that we get real-time speed already when using a single dual-processor 2 GHz G5 Macintosh to do the detection computations.  相似文献   

6.
Orbital debris impacts on the International Space Station occur frequently. To date, none of the impacting particles has been large enough to penetrate manned pressurized volumes. We used the Manned Spacecraft Crew Survivability code to evaluate the risk to crew of penetrations of pressurized modules at two assembly stages: after Flight 1J, when the pressurized elements of Kibo, the Japanese Experiment Module, are present, and after Flight 1E, when the European Columbus Module is present. Our code is a Monte-Carlo simulation of impacts on the Station that considers several potential event types that could lead to crew loss. Among the statistics tabulated by the program is the probability of death of one or more crew members in the event of a penetration, expressed as the risk factor, R. This risk factor is dependent on details of crew operations during both ordinary circumstances and decompression emergencies, as well as on details of internal module configurations. We conducted trade studies considering these procedure and configuration details to determine the bounds on R at the 1J and 1E stages in the assembly sequence. Here we compare the R-factor bounds, and procedures could that reduce R at these stages.  相似文献   

7.
Many parameters influence the evolution of the near-Earth debris population, including launch, solar, explosion and mitigation activities, as well as other future uncertainties such as advances in space technology or changes in social and economic drivers that effect the utilisation of space activities. These factors lead to uncertainty in the long-term debris population. This uncertainty makes it difficult to identify potential remediation strategies, involving active debris removal (ADR), that will perform effectively in all possible future cases. Strategies that cannot perform effectively, because of this uncertainty, risk either not achieving their intended purpose, or becoming a hindrance to the efforts of spacecraft manufactures and operators to address the challenges posed by space debris.  相似文献   

8.
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.  相似文献   

9.
正开发低成本航天器、开放航天基础设施、开展航天保险业务是商业航天不可或缺的三个必要条件。当前我国的低成本航天器全面开花,航天基础设施也在逐步向商业领域倾斜,航天保险却相对发展滞后。航天和保险原本是并不相干的两个领域,但基于航天器固有的高投资、高风险属性,要想吸引社会资本开展商业化运作就必须建立起一套行之有效的风险损失管控机制。目前我国正处于航天大国向航天强国迈进的关键历  相似文献   

10.
Optical observations have discovered a substantial amount of decimeter sized objects in orbits close to the geosynchronous altitude. Most of these are probably the result of a still undetermined number of explosions occurred to spacecraft and upper stages. So far, however, only two or three fragmentations have been confirmed near GEO and the identification of further explosions at a so high altitude is made difficult by the long time passed since the occurrence of the events and by the effects of the orbital perturbations on the resulting debris clouds. In order to assist the optical observers in identifying debris clouds due to explosions in proximity of the geosynchronous region, a set of fragmentations has been simulated, taking into account a reasonable range of ejection velocities as a function of the fragment size. The resulting debris clouds have been propagated, including all the relevant orbital perturbations, for several decades and the results obtained are presented as snapshots, at given post-explosion times, in the orbital elements space.  相似文献   

11.
GTO objects can potentially collide with operative satellites in LEO and GEO protected regions. Internationally accepted debris mitigation guidelines require that these objects exit these protected regions within 25?years, e.g. by re-entering and burning up in Earth’s atmosphere. In this paper, an inventory of the GTO debris generated from Ariane 5 launches in the period 2012–2017 is provided, and it is expected that none of these objects will re-enter within 25?years. For future launches, natural perturbations can be exploited to increase compliance with mitigation guidelines without the use of extra propellant or complex de-orbiting systems, which is attractive from an economic point of view. The lifetime of GTO objects is very sensitive to initial conditions and some environmental and body-related parameters, mainly due to the effect of solar gravity on the perigee altitude. As a consequence, the lifetime of a specific GTO object cannot be predicted accurately, but its probability of re-entering in less than 25?years can be estimated with proper accuracy by following a statistical approach. By propagating the orbits of over 800,000 simulated Ariane 5 GTO objects, it was found that the launch time leading to the highest probability of compliance with debris mitigation guidelines for GEO launches from Kourou corresponds to about 2 PM local time, regardless of the date of launch, which leads to compliance rates ranging from 60 to 100%. Current practice is to launch at around 5–9?PM, so a change in procedures would be required in order to reach a higher degree of compliance with debris mitigation guidelines, which was predicted to be on average below 20% for the objects generated in the period 2012–2017.  相似文献   

12.
This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat’s propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471?km (i.e., 100?km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.  相似文献   

13.
A joint team of researchers under the auspices of the Center for Space Debris Information Collection, Processing and Analysis of the Russian Academy of Sciences collaborates with 15 observatories around the world to perform observations of space debris. For this purpose, 14 telescopes were equipped with charge-coupled device (CCD) cameras, Global Positioning System (GPS) receivers, CCD frame processing and ephemeris computation software, with the support of the European and Russian grants. Many of the observation campaigns were carried out in collaboration with the Astronomical Institute of the University of Bern (AIUB) team operating at the Zimmerwald observatory and conducting research for the European Space Agency (ESA), using the Tenerife/Teide telescope for searching and tracking of unknown objects in the geostationary region (GEO). More than 130,000 measurements of space objects along a GEO arc of 340.9°, collected and processed at Space Debris Data Base in the Ballistic Center of the Keldysh Institute of Applied Mathematics (KIAM) in 2005–2006, allowed us to find 288 GEO objects that are absent in the public orbital databases and to determine their orbital elements. Methods of discovering and tracking small space debris fragments at high orbits were developed and tested. About 40 of 150 detected unknown objects of magnitudes 15–20.5 were tracked during many months. A series of dedicated 22-cm telescopes with large field of view for GEO survey tasks is in process of construction. 7 60-cm telescopes will be modernized in 2007.  相似文献   

14.
This study proposes a motion detection and object tracking technique for GEO debris in a sequence of images. A couple of techniques (called the “stacking method” and “line-identifying technique”) were recently proposed to address the same problem. Although these techniques are effective at detecting the debris position and motion in the image sequences, there are some issues concerned with computational load and assumed debris motion. This study derives a method to estimate motion vectors of objects in image sequence and finally detect the debris locations by using a computer vision technique called an optical flow algorithm. The new method detects these parameters in low computational time in a serial manner, which implies that it has an advantage to track not only linear but also nonlinear motion of GEO debris more easily than the previous methods. The feasibility of the proposed methods is validated using real and synthesized image sequences which contain some typical debris motions.  相似文献   

15.
There are challenges associated with optical observations of Earth-orbiting objects that are at, or near, the limit of detection using terrestrial space surveillance sensors. These challenges include observing small objects not just for statistical purposes, but also with enough frequency and accuracy to move them into satellite catalogs, to provide the capability to routinely observe and characterize smaller objects, and to develop the capability to observe the satellite positions with increased accuracy. Until recently, ground-based observers could easily have mistaken such small objects as debris. Given the current pace of small satellite development, it may not be much longer before operational spacecraft of even smaller size are launched. AMOS is currently developing techniques to observe and characterize these small spacecraft, and applying those techniques to orbital debris.  相似文献   

16.
The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014–2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10?Hz repetition rate, a pulse width of 3–5?ns and a pulse energy of 450?mJ for green (532?nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS).Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 – January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10?s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters.  相似文献   

17.
When the impact risk from meteoroids and orbital debris is assessed the main concern is usually structural damage. With their high impact velocities of typically 10–20 km/s millimeter or centimeter sized objects can puncture pressure vessels and other walls or lead to destruction of complete subsystems or even whole spacecraft. Fortunately chances of collisions with such larger objects are small (at least at present). However, particles in the size range 1–100 μm are far more abundant than larger objects and every orbiting spacecraft will encounter them with certainty. Every solar cell (8 cm2 area) of the Hubble Space Telescope encountered on average 12 impacts during its 8.25 years of space exposure. Most were from micron sized particles.  相似文献   

18.
Sun glinting from a satellite in earth orbit is suggested as the probable cause of a reported lunar flash observed on May 23, 1985. This conflicts with the suggestion that a lunar ionization phenomenon is the source and points out concern that flashes from space debris must always be considered in the investigation of sky — flash discoveries.  相似文献   

19.
Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research.  相似文献   

20.
The paper gives an overview on the fields of debris research performed at the TUBS. The orbital debris flux of all objects larger than 1cm has been established and simulated by a mathematical model in the past mainly on the basis of simulating explosion fragments. However the flux in the millimeter and submillimeter size range seems to be largely influenced by collisions and their ejecta on high circular or on eccentric orbits. The angular distribution of the impact flux on targets at various altitudes and on various inclinations are presented. This angular distribution has also influence on the surface impact flux on a space station, where also the self shielding has to be considered. Results for the ISS are presented. The risk of impacts of larger not shieldable objects on a space station may become too high, so that collision avoidance manoeuvres must be envisaged, the feasibility of which using onboard detectors is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号