首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:0,他引:1  
The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process.  相似文献   

2.
A semigray (shortwave and longwave) surface temperature model is developed from conditions on Venus, Earth and Mars, where the greenhouse effect is mostly due to carbon dioxide and water vapor. In addition to estimating longwave optical depths, parameterizations are developed for surface cooling due to shortwave absorption in the atmosphere, and for convective (sensible and latent) heat transfer. An approximation to the Clausius–Clapeyron relation provides water–vapor feedback. The resulting iterative algorithm is applied to three “super-Earths” in the Gliese 581 system, including the “Goldilocks” planet g (Vogt et al., 2010). Surprisingly, none of the three appear habitable. One cannot accurately locate a star’s habitable zone without data or assumptions about a planet’s atmosphere.  相似文献   

3.
We have developed a rock cutting mechanism for in situ planetary exploration based on abrasive diamond impregnated wire. Performance characteristics of the rock cutter, including cutting rate on several rock types, cutting surface lifetime, and cut rock surface finish are presented. The rock cutter was developed as part of a broader effort to develop an in situ automated rock thin section (IS-ARTS) instrument. The objective of IS-ARTS was to develop an instrument capable of producing petrographic rock thin sections on a planetary science spacecraft. The rock cutting mechanism may also be useful to other planetary science missions with in situ instruments in which sub-sampling and rock surface preparation are necessary.  相似文献   

4.
We present a concept for a challenging in situ science mission to a primitive, binary near-Earth asteroid. A sub-400-kg spacecraft would use solar electric propulsion to rendezvous with the C-class binary asteroid (175706) 1996 FG3. A campaign of remote observations of both worlds would be followed by landing on the ∼1 km diameter primary to perform in situ measurements. The total available payload mass would be around 34 kg, allowing a wide range of measurement objectives to be addressed. This mission arose during 2004 from the activities of the ad-hoc Small Bodies Group of the DLR-led Planetary Lander Initiative. Although the particular mission scenario proposed here was not studied further per se, the experience was carried over to subsequent European asteroid mission studies, including first LEONARD and now the Marco Polo near-Earth asteroid sample return proposal for ESA’s Cosmic Vision programme. This paper may thus be of interest as much for insight into the life cycle of mission proposals as for the concept itself.  相似文献   

5.
Jupiter’s icy moon Europa is one of most promising places in our Solar System where possible extraterrestrial life forms could exist either in the past or even presently. The Europa Lander mission, an exciting part of the international Europa Jupiter System Mission (EJSM/Laplace), considers in situ planetary exploration of the moon. The distance of Europa from the Earth and the Sun asks for autonomous analytical tools that maximize the scientific return at minimal resources, demanding new experimental concepts. We propose a novel instrument, based on the atomic spectroscopy of laser generated plasmas for the elemental analysis of Europa’s surface materials as far as it is in reach of the lander for example by a robotic arm or a mole, or just onboard the lander. The technique of laser-induced plasma spectrometry provides quantitative elemental analysis of all major and many trace elements. It is a fast technique, i.e. an analysis can be performed in a few seconds, which can be applied to many different types of material such as ice, dust or rocks and it does not require any sample preparation. The sensitivity is in the range of tens of ppm and high lateral resolution, down to 50 μm, is feasible. In addition, it provides the potential of depth profiling, up to 2 mm in rock material and up to a few cm in more transparent icy matrices. Key components of the instrument are presently developed in Germany for planetary in situ missions. This development program is accompanied by an in-depth methodical investigation of this technique under planetary environmental conditions.  相似文献   

6.
What hazards might biological contamination pose to planets, comets and other celestial bodies visited by probes launched from Earth? What hazards might returning probes pose to Earth and its inhabitants? What should be considered an acceptable level of risk? What technologies, procedures and constraints should be applied? What sort of attitude has to be chosen concerning human crews, who themselves could become both contaminated victims and contaminating agents? The vast issue of planetary protection must, more than ever, spark ethical debate. Space treaty, COSPAR recommendations offer borders and context for this reflection, which has to be introduced in the actual humanist: never has been anthropocentrism so practical and concerned, in the same time, by the next generations, because of the historical character of life. At least an ethics of risk is necessary (far from the myth of zero-risk) for all the three types of contamination: other celestial bodies (forward contamination), Earth (backward contamination) and astronauts.  相似文献   

7.
    
The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration.  相似文献   

8.
We describe a Mars ‘Micro Mission’ for detailed study of the martian satellites Phobos and Deimos. The mission involves two ∼330 kg spacecraft equipped with solar electric propulsion to reach Mars orbit. The two spacecraft are stacked for launch: an orbiter for remote investigation of the moons and in situ studies of their environment in Mars orbit, and another carrying a lander for in situ measurements on the surface of Phobos (or alternatively Deimos). Phobos and Deimos remain only partially studied, and Deimos less well than Phobos. Mars has almost always been the primary mission objective, while the more dedicated Phobos project (1988–89) failed to realise its full potential. Many questions remain concerning the moons’ origins, evolution, physical nature and composition. Current missions, such as Mars Express, are extending our knowledge of Phobos in some areas but largely neglect Deimos. The objectives of M-PADS focus on: origins and evolution, interactions with Mars, volatiles and interiors, surface features, and differences. The consequent measurement requirements imply both landed and remote sensing payloads. M-PADS is expected to accommodate a 60 kg orbital payload and a 16 kg lander payload. M-PADS resulted from a BNSC-funded study carried out in 2003 to define candidate Mars Micro Mission concepts for ESA’s Aurora programme.  相似文献   

9.
The next time humans set foot on the Moon or another planet, will we treat the crew like we would a sample return mission when they come back to Earth? This may seem a surprising or even provocative question, but it is one we need to address. The hurdles and hazards of sending humans to Mars – for example, the technology constraints and physiological and psychological challenges – are many; but let us not forget the need to protect populations and environments from the risk of contamination [United Nations, treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial bodies (the “Outer Space Treaty”) referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966].  相似文献   

10.
For the purposes of planetary protection, a series of experiments were performed to answer a long-standing question about the potential of bacterial contamination of interplanetary spacecraft from liquid hydrazine. Spores of Bacillus atrophaeus (ATCC No. 9372, also known as Bacillus subtilis var. niger, and BSN) were exposed to hydrazine and survivors were enumerated using the NASA standard planetary protection pour plate assay. Results indicate that bulk hydrazine rocket propellant may be considered free of living bacterial cells for planetary protection compliance.  相似文献   

11.
Toward a global space exploration program: A stepping stone approach   总被引:1,自引:0,他引:1  
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.  相似文献   

12.
In this paper we present a conceptual design of a spaceborne instrument for the in situ production of rock thin sections on planetary surfaces. The in situ Automated Rock Thin Section Instrument (IS-ARTS) conceptual design demonstrates that the in situ production of thin sections on a planetary body is a plausible new instrument capability for future planetary exploration. Thin section analysis would reduce much ambiguity in the geological history of a sampled site that is present with instruments currently flown. The technical challenge of producing a thin section device compatible with the spacecraft environment is formidable and has been thought too technically difficult to be practical. Terrestrial thin section preparation requires a skilled petrographist, several preparation instruments that individually exceed typical spacecraft mass and power limits, and consumable materials that are not easily compatible with spaceflight. In two companion papers we present research and development work used to constrain the capabilities of IS-ARTS in the technical space compatible with the spacecraft environment. For the design configuration shown we conclude that a device can be constructed that is capable of 50 sample preparations over a 2 year lifespan with mass, power, and volume constraints compatible with current landed Mars mission configurations. The technical requirements of IS-ARTS (mass, power and number of samples produced) depend strongly on the sample mechanical properties, sample processing rate, the sample size and number of samples to be produced.  相似文献   

13.
Analyses of the epidemiological data on the Japanese A-bomb survivors, who were exposed to γ-rays and neutrons, provide most current information on the dose–response of radiation-induced cancer. Since the dose span of main interest is usually between 0 and 1 Gy, for radiation protection purposes, the analysis of the A-bomb survivors is often focused on this range. However, estimates of cancer risk for doses larger than 1 Gy are becoming more important for long-term manned space missions. Therefore in this work, emphasis is placed on doses larger than 1 Gy with respect to radiation-induced solid cancer and leukemia mortality. The present analysis of the A-bomb survivors data was extended by including two extra high-dose categories and applying organ-averaged dose instead of the colon-weighted dose. In addition, since there are some recent indications for a high neutron dose contribution, the data were fitted separately for three different values for the relative biological effectiveness (RBE) of the neutrons (10, 35 and 100) and a variable RBE as a function of dose. The data were fitted using a linear and a linear-exponential dose–response relationship using a dose and dose-rate effectiveness factor (DDREF) of both one and two. The work presented here implies that the use of organ-averaged dose, a dose-dependent neutron RBE and the bending-over of the dose–response relationship for radiation-induced cancer could result in a reduction of radiation risk by around 50% above 1 Gy. This could impact radiation risk estimates for space crews on long-term mission above 500 days who might be exposed to doses above 1 Gy. The consequence of using a DDREF of one instead of two increases cancer risk by about 40% and would therefore balance the risk decrease described above.  相似文献   

14.
使用两个跃迁频率,观测W33B的OH分子左右圆偏振的脉泽辐射.从左右圆偏振谱的Zeeman速度分裂,导得脉泽活动区的磁场大约为5mG.采用均匀抽运,完全饱和辐射的球模型,估计脉泽活动区的原恒星物质的氢分子数密度为3×107cm-3.  相似文献   

15.
本文研究了Ⅱ类甲醇脉泽与周围红外源的关系,发现它们有很强的相关性。分析认为红外源很可能是Ⅱ类甲醇脉泽的抽运源。  相似文献   

16.
United Nations Space Treaties [10 and 11] require the preservation of planets and of Earth from contamination. All nations part to these Treaties shall take measures to prevent forward and backward contamination during missions exploring our solar system. As observer for the United Nations Committee on Peaceful Uses of Outer Space, the COSPAR (Committee of Space Research) defines and handles the applicable policy and proposes recommendations to Space Agencies [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005. http://www.cosparhq.org/scistr/PPPolicy.htm.]. The goal is to protect celestial bodies from terrestrial biological contamination as well as to protect the Earth environment from an eventual biohazard which may be carried by extraterrestrial samples or by space systems returning to Earth. According to the applicable specifications, including in our case the French requirements [CNES, System Safety. Planetary Protection Requirements. Normative referential CNES RNC-CNES-R-14, CNES Toulouse, ed. 4, 04 October 2002.], the prevention of forward contamination is accomplished by reducing the bioburden on space hardware to acceptable, prescribed levels, including in some instances system sterilization, assembling and integrating the appropriate spacecraft systems in cleanrooms of appropriate biological cleanliness, avoiding or controlling any recontamination risk, and limiting the probability impact of space systems. In order to prepare for future exploration missions [Debus, A., Planetary protection: organization requirements and needs for future planetary exploration missions, ESA conference publication SP-543, pp 103–114, 2003.], and in particular for missions to Mars requiring to control the spacecraft bioburden, a test program has been developed to evaluate the biological contamination under the fairing of the Ariane 5 launcher.  相似文献   

17.
    
In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of the mission, sending astronauts to Mars will entail meeting all these constraints. Astronauts present huge sources of contamination for Mars and are also potential carriers of biohazardous material on their return to Earth. If they were to have the misfortune of being contaminated, they themselves would become a biohazard, and, as a consequence, in addition to the technical constraints, human and ethical considerations must also be taken into account.  相似文献   

18.
    
In this paper main achievements in the area of space astronomy are summarized.During the flight of cosmic Gamma-Ray Burst Spectrometer(GRBS) onboard spacecraft Shenzhou-2(launched on 2001-01-10), much observational results of cosmic γ-ray burst and solar X, γ-ray burst are obtained. The preliminary analysis on space data has lead to some interesting results. Besides it, some other long-term space astronomy programs are briefly described here.  相似文献   

19.
20.
In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号