共查询到20条相似文献,搜索用时 11 毫秒
1.
Dose protraction studies with low- and high-LET radiations on neoplastic cell transformation in vitro. 总被引:1,自引:0,他引:1
L M Yang TC-HCraise C A Mei M-TTobias 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(11):137-147
A major objective of our heavy-ion research is to understand the potential carcinogenic effects of cosmic rays and the mechanisms of radiation-induced cell transformation. During the past several years, we have studied the relative biological effectiveness of heavy ions with various atomic numbers and linear energy transfer on neoplastic cell transformation and the repair of transformation lesions induced by heavy ions in mammalian cells. All of these studies, however, were done with a high dose rate. For risk assessment, it is extremely important to have data on the low-dose-rate effect of heavy ions. Recently, with confluent cultures of the C3H10T1/2 cell line, we have initiated some studies on the low-dose-rate effect of low- and high-LET radiation on cell transformation. For low-LET photons, there was a decrease in cell killing and cell transformation frequency when cells were irradiated with fractionated doses and at low dose rate. Cultured mammalian cells can repair both subtransformation and potential transformation lesions induced by X rays. The kinetics of potential transformation damage repair is a slow one. No sparing effect, however, was found for high-LET radiation. There was an enhancement of cell transformation for low-dose-rate argon (400 MeV/u; 120 keV/micrometer) and iron particles (600 MeV/u; 200 keV/micrometer). The molecular mechanisms for the enhancement effect is unknown at present. 相似文献
2.
G Grossi M Durante G Gialanella M Pugliese P Scampoli Y Furusawa T Kanai N Matsufuji 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(6):1358-1361
Biophysical models are commonly used to evaluate the effectiveness of shielding in reducing the biological damage caused by cosmic radiation in space flights. To improve and validate these codes biophysical experiments are needed. We have measured the induction of chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to 500 MeV/n iron ion beams (dose range 0.1-1 Gy) after traversing shields of different material (lucite, aluminium, or lead) and thickness (0-11.3 g/cm2). For comparison, cells were exposed to 200 MeV/n iron ions and to X-rays. Chromosomes were prematurely condensed by a phosphatase inhibitor (calyculin A) to avoid cell-cycle selection produced by the exposure to high-LET heavy-ion beams. Aberrations were scored in chromosomes 1, 2, and 4 following fluorescence in situ hybridization. The fraction of aberrant lymphocytes has been evaluated as a function of the dose at the sample position, and of the fluence of primary 56Fe ions hitting the shield. The influence of shield thickness on the action cross-section for the induction of exchange-type aberrations has been analyzed, and the dose average-LET measured as a function of the shield thickness. These preliminary results prove that the effectiveness of heavy ions is modified by shielding, and the biological damage is dependent upon shield thickness and material. 相似文献
3.
T C Yang L M Craise M T Mei C A Tobias 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(10):131-140
Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At present the role of oncogenes in radiation cell transformation is unclear. 相似文献
4.
R Facius M Schafer H Bucker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(10):175-185
Since the beg inning of manned space flight the potentially unique radiobiological properties of the heavy ions of the cosmic radiation had been, apart from possible interactions of radiation effects with biological effects of weightlessness, of major concern with respect to the assessment of radiation hazards in manned space flight. Radiobiological findings obtained from space flight experiments and ground based experiments with densely ionizing radiation are discussed, which suggest qualitative differences between the radiobiological mechanisms of sparsely ionizing and densely ionizing radiation. These findings comprise the observation of a long lateral range of radiobiological effectiveness around tracks of single heavy ions, the observation of micro lesions induced in biological targets by the penetration of heavy ions, the nonadditivity of radiobiological effects from sparsely and densely ionizing radiation, the different kinetics for the expression of late effects induced by sparsely or densely ionizing radiation, and the observation of a reversed dose rate effect for early and late effects induced by densely ionizing radiation. These findings bear on the radiation protection standards to be installed for a general public in manned space flight and on the design of experiments, which intend to contribute to their specification. 相似文献
5.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(4):474-482
The deleterious effects of accelerated heavy ions as component of the space radiation environment on living cells are of increasing importance for long duration human space flight activities. The most important aspect of such densely ionizing particle radiation is attributed to the type and quality of biological damage induced by them. This issue is addressed by investigating cell inactivation and mutation induction at the Hprt locus (coding for hypoxanthine-guanine-phosphoribosyl-transferase) of cultured V79 Chinese hamster cells exposed to densely ionizing radiation (accelerated heavy ions with different LETs from oxygen to gold, specific energies ranging from 1.9 to 69.7 MeV/u, corresponding LET values range from 62 to 13,223 keV/μm) and to sparsely ionizing radiation (200 kV X-rays). 30 spontaneous, 40 X-ray induced and 196 heavy ion induced 6-thioguanine resistant Hprt mutant colonies were characterized by Southern technique using the restriction enzymes EcoRI, PstI and BglII and a full length Hprt cDNA probe isolated from the plasmid pHPT12. Restriction patterns of the spontaneous Hprt mutants were indistinguishable from the wild type pattern, as these mutants probably contain only small deletions or even point mutations in the Hprt locus. In contrast, the overall spectrum of heavy ion induced mutations revealed a majority of partial or total deletions of the Hprt gene. With constant particle fluence (3 × 106 particles/cm2) the quality of heavy ion induced mutations in the Hprt locus depends on physical parameters of the beam (atomic number, specific energy, LET). This finding suggests a relationship between the type of DNA damage and track structure. The fraction of mutants with severe deletions in the Hprt locus after exposure to oxygen ions increases from 65% at 60 keV/μm up to a maximum (100%) at 300 keV/μm and declines with higher LET values to 75% at 750 keV/μm. With heavier ions (Ca- and Au-ions) and even higher LET-values this mutant fraction decreases to 58% at 13,200 keV/μm. Heavy ion induced DNA break points in the Hprt locus are not randomly distributed. 相似文献
6.
A B Cox E J Ainsworth J G Jose A C Lee J T Lett 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(8):211-219
Space radiations, especially heavy ions, constitute significant hazards to astronauts. These hazards will increase as space missions lengthen. Moreover, the dangers to astronauts will be enhanced by the persistence, or even the progression, of biological damage throughout their subsequent life spans. To assist in the assessment of risks to astronauts, we are investigating the long-term effects of heavy ions on specific animal tissues. In one study, the eyes of rabbits of various ages were exposed to a single dose of Bragg plateau 20Ne ions (LET infinity approximately equals 30 keV/micrometer). The development of cataracts has shown a pronounced age-related response during the first year after irradiation, and will be followed for two more years. In other studies, mice were exposed to single or fractionated doses of 12C ions (4-cm spread-out Bragg peak; dose-averaged LET infinity = 70-80 keV/micrometer) or 60Co gamma-photons (LET infinity = 0.3 keV/micrometer). Measurements of the frequency of posterior lens opacification have shown that the tissue sparing observed with dose fractionation of gamma-photons was absent when 12C-ion doses were fractionated. Development of posterior lens cataracts was also followed for long periods (up to 21 months) in mice exposed to single doses of Bragg plateau HZE particles (40Ar, 20Ne and 12C ions: LET infinity approximately equals 100, 30 and 10 keV/micrometer, respectively) or 225 kVp X-rays. Based on average cataract levels at the different observation times, the RBE's (RBE = relative biological effectiveness) for the ions were circa 5, 3 and 1-2, respectively, over the range of doses used (0.05-0.9 Gy). Investigations of cataractogenesis are useful for exploring the model of radiation damage proposed by Casarett and by Rubin and Casarett with a tissue not connected directly to the vasculature. 相似文献
7.
L M Yang TC-HCraise J C Prioleau M R Stampfer J S Rhim 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(2-3):127-136
For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 相似文献
8.
A Chatterjee W R Holley 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(2-3):33-43
Using mechanisms of indirect and direct radiation, a generalized theory has been developed to account for strand break yields by high-LET particles. The major assumptions of this theory are: (i) damage at deoxyribose sites results primarily in strand break formation and (2) damage to bases leads to a variety of base alterations. Results of the present theory compare well with cellular data without enzymatic repair. As an extension of this theory, we show that damage clusters are formed near each double strand break for high-LET radiation only. For 10 MeV/n (LET = 450 keV/micrometer) neon ions, the results show that on average there are approximately 3 additional breaks and approximately 3 damaged bases formed near each double strand break. For 100 MeV/n helium ions (LET = 3 keV/micrometer), less than 1% of the strand breaks have additional damage within 10 base pairs. 相似文献
9.
D Leugner T Streibel H Rocher G Reitz W Heinrich 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(4):511-515
Stacks of CR-39 plastic nuclear track detectors were mounted inside the MIR-station during the EUROMIR-94-mission. We present LET-spectra determined separately for long range cosmic ray heavy ions and for short range target fragments produced in nuclear interactions of cosmic rays and measured charge distributions for relativistic and stopping particles. 相似文献
10.
K George V Willingham H Wu D Gridley G Nelson F A Cucinotta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):891-899
Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. 相似文献
11.
H Yasuda T Komiyama K Fujitaka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):1011-1015
The fluence of high-LET particles (HLP) with LET infinity H2O greater than 15 keV micrometers-1 in selected organs and tissues were measured with plastic nuclear track detectors using a life-size human phantom on the 9th Shuttle-Mir Mission (STS-91). The planar-track fluence of HLP during the 9.8-day mission ranged from 1.9 x 10(3) n cm-2 (bladder) to 5.1 x 10(3) n cm-2 (brain) by a factor of 2.7. Based on these data, a probability of HLP hits to a matured cell of each organ or tissue was roughly estimated for a 90-day ISS mission. In the calculation, all cells were assumed to be spheres with a geometric cross-sectional area of 500 micrometers2 and the cell-hit frequency from isotropic space radiation can be described by the Poisson-distribution function. As results, the probability of one or more than 1 hit to a single cell by HLP for 90 days ranged from 17% to 38%; that of two or more than 2 hits was estimated to be 1.3-8.2%. 相似文献
12.
J T Lett A C Lee A B Cox D H Wood 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(10):325-331
Radiation cataractogenesis induced by small acute doses of particulate radiations and photons in the New Zealand white (NZW) rabbit (Oryctolagus cuniculus), the beagle dog (Canis familiaris) and the rhesus monkey (Macaca mulatta) is discussed in the context of the use of animal models to assess the radiation hazards faced by humans during lengthy sojourns in deep space. Attention is paid to: 1) the importance of lifespan studies with long-lived species--the above animals have median lifespans in captivity of 5-7, 13-14 and approximately 25 years, respectively; 2) the magnitudes of possible dose thresholds for cataractogenesis from sparsely ionizing radiations and the modifications of those thresholds by the late degenerative phase of the phenomenon. 相似文献
13.
G Kraft W Kraft-Weyrather E A Blakely R Roots 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(11):127-136
A broad spectrum of particles and energies has been used in the last years to study the influence of the radiation quality i.e. of the physical parameters of the particle beam on the biological effectiveness ?2?12?. In these measurements a common structure of the functional dependence of the induction probability per particle (cross section) from the linear energy transfer is observed for different biological endpoints. Because of the relevance for space research, we present in this report our data from experiments with iron and nickel particles, in particular. Our experiments were designed to investigate the relationship between the inactivation and chromosome aberration in mammalian cells and the induction of single and double strand breaks in SV40 DNA in respect to the parameters of the track formation like LET and particle energy. 相似文献
14.
J T Lett A B Cox D S Bergtold A C Lee J E Pickering 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(10):251-256
Optic tissues in groups of New Zealand white rabbits were irradiated locally at different stages throughout the median life span of the species with a single dose (9 Gy) of 425 MeV/amu Ne ions (LET infinity approximately 30 keV/micrometer) and then inspected routinely for the progression of radiation cataracts. The level of early cataracts was found to be highest in the youngest group of animals irradiated (8 weeks old), but both the onset of late cataracts and loss of vision occurred earlier when animals were irradiated during the second half of the median life span. This age response can have serious implications in terms of space radiation hazards to man. Rhesus monkeys that had been subjected to whole-body skin irradiation (2.8 and 5.6 Gy) by 32 MeV protons (range in tissue approximately 1 cm) some twenty years previously were analysed for radiation damage by the propagation of skin fibroblasts in primary cultures. Such propagation from skin biopsies in MEM-alpha medium (serial cultivation) or in supplemented Ham's F-10 medium (cultivation without dilution) revealed late damage in the stem (precursor) cells of the skins of the animals. The proton fluxes employed in this experiment are representative of those occurring in major solar flares. 相似文献
15.
J T Lett A B Cox A C Lee 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(11):295-303
Aspects of experiments on radiation-induced lenticular opacification during the life spans of two animal models, the New Zealand white rabbit and the rhesus monkey, are compared and contrasted with published results from a life span study of another animal model, the beagle dog, and the most recent data from the ongoing study of the survivors from radiation exposure at Hiroshima and Nagasaki. An important connection among the three animal studies is that all the measurements of cataract indices were made by one of the authors (A.C.L.), so variation form personal subjectivity was reduced to a minimum. The primary objective of the rabbit experiments (radiations involved: 56Fe, 40Ar and 20Ne ions and 60Co gamma photons) is an evaluation of hazards to astronauts from galactic particulate radiations. An analogous evaluation of hazards from solar flares during space flight is being made with monkeys exposed to 32, 55, 138 and 400 MeV protons. Conclusions are drawn about the proper use of animal models to simulate radiation responses in man and the levels of radiation-induced lenticular opacification that pose risks to man in space. 相似文献
16.
V M Petrov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):397-408
The human exposure in space depends on the three factors: the flight trajectory, its date and duration and the cyclogram of the cosmonaut's activities. In the near-Earth orbits the daily dose varies within the limits of (1.5-5.0) 10(-4) Gy day-1 and greatly increases if the altitude increases. The mean daily quality factor is 1.6-2.0. Strong solar proton events in the orbits with the inclination of < 52 degrees result in the dose rate increase up to 2-3 cGy day-1. On the surface of the orbital spacecrafts the daily dose reaches 2 Gy. The neutron dose depends on the shielding mass distribution varying within the limits of 6%-30% of the charged particles dose. In deep space the dose is mainly formed by the galactic and solar cosmic rays(GCR,SCR). Behind the shielding of 2-3 g cm-2 Al the GCR dose varies in the range of (20-30) 10(-5) Gy day-1. The SCR dose can reach hundreds of cSv. 相似文献
17.
A B Cox A C Lee G R Williams J T Lett 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(2-3):379-384
Rhesus monkeys that were exposed in 1969, at the age of approximately 2 years, to low doses of "mixed-energy" protons (10- and 110-MeV) are exhibiting progressive (degenerative) lenticular changes. We have conducted regular examinations of this group of monkeys for cataractogenic development since 1987, i.e., 18 years after irradiation, and the animals began to show enhanced degrees of lenticular opacification two years later. The lenses of age-matched controls (median lifespan in captivity approximately 24 years) continue to exhibit much lower levels of opacification (senile cataracts). Trends in the new data are consistent with the cataractogenic patterns observed for other groups of monkeys that were exposed at similar ages in 1964 and 1965 to protons of different energies, and which we began to monitor only 20-21 years later. Therefore, the new information from the mixed-energy group of monkeys provides insight into the development of late cataractogenic sequelae in the other groups of animals during the 2-3 years before we began to measure them. Comparisons are also made here among recent results from the different groups of primates and from New Zealand white (NZW) rabbits that were exposed when young to 56Fe ions and monitored continuously thereafter. This is done because analogous expression of radiation-induced degenerative cataractogenesis also occurs late in the lifespan of the lagomorphs (control median lifespan in captivity approximately 5-7 years), but in this case the cataractogenic profile has been documented through most of the post-irradiation lifespan. 相似文献
18.
S B Curtis E G Luebeck W D Hazelton S H Moolgavkar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):937-944
When applied to the Colorado Plateau miner population, the two-stage clonal expansion (TSCE) model of radiation carcinogenesis predicts that radiation-induced promotion dominates radiation-induced initiation. Thus, according to the model, at least for alpha-particle radiation from inhaled radon daughters, lung cancer induction over long periods of protracted irradiation appears to be dominated by radiation-induced modification of the proliferation kinetics of already-initiated cells rather than by direct radiation-induced initiation (i.e., mutation) of normal cells. We explore the possible consequences of this result for radiation exposures to space travelers on long missions. Still unknown is the LET dependence of this effect. Speculations of the cause of this phenomenon include the suggestion that modification of cell kinetics is caused by a "bystander" effect, i.e., the traversal of normal cells by alpha particles, followed by the signaling of these cells to nearby initiated cells which then modify their proliferation kinetics. 相似文献
19.
D S Bergtold A B Cox C M Su J T Lett 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(8):221-229
Skin biopsies were taken from the central regions of the ears of New Zealand white rabbits following localized exposure of one ear of each rabbit to 530 MeV/amu Ar or 365 MeV/amu Ne ions. The unirradiated ears served as controls. Biopsies were taken also from the chests and inner thighs of rhesus monkeys after whole-body exposure to 32 MeV protons and from unirradiated control animals. The linear energy transfers (LET infinity's) for the radiations were 90 +/- 5, 35 +/- 3, and approximately 1.2 keV/micrometer, respectively. In the rabbit studies, explants were removed with a 2 mm diameter dermal punch at post-irradiation times up to five years after exposure. Similar volumes of monkey tissue were taken from skin samples excised surgically 16-18 years following proton irradiation. Fibroblast cultures were initiated from the explants and were propagated in vitro until terminal senescence (cessation of cell division) occurred. Cultures from irradiated tissue exhibited decreases in doubling potential that were dependent on radiation dose and LET infinity and seemed to reflect damage to stem cell populations. The implications of these results for astronauts exposed to heavy ions and/or protons in space include possible manifestations of residual effects in the skin many years after exposure (e.g. unsatisfactory responses to trauma or surgery). 相似文献
20.
Chromosomal intrachanges induced by swift iron ions. 总被引:1,自引:0,他引:1
M Hortsmann M Durante C Johannes G Obe 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(2):276-279
We measured the induction of structural aberrations in human chromosome 5 induced by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/micrometers, doses 1 or 4 Gy) Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture and slides were painted by mBAND. We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 and 4 Gy Fe-ions, respectively. Inter-chromosomal exchanges were the prevalent aberration type measured at both doses, followed by terminal deletions, and by intra-chromosomal exchanges. Among intra-chromosomal exchanges, intra-arm events were more frequent than inter-arm, but a significant number of intra-changes was associated to inter-changes involving the same chromosome after 4 Gy of iron ions. These events show that the complexity of chromosomal exchanges induced by heavy ions can be higher than expected by previous FISH studies. 相似文献