首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
纳秒脉冲等离子体激励控制小后掠三角翼低速绕流试验   总被引:3,自引:1,他引:2  
为探索纳秒脉冲介质阻挡放电(NS DBD)对小后掠尖前缘三角翼的流动控制效果和作用机理,进行NS DBD用于改善其气动特性的测力试验和流动显示试验。当来流速度分别为30m/s和45m/s时,测力试验结果表明位于机翼前缘的NS DBD能很好地改善三角翼大迎角气动特性,其中来流速度为45m/s时最大升力系数提高了18.3%;研究了脉冲激励频率对流动控制效果的影响规律,最佳的无量纲激励频率F+≈1~2。在来流速度为20m/s时,采用粒子图像测速仪(PIV)研究了不同迎角下激励前后机翼背风面流场,表明NS DBD可改善上翼面旋涡结构,使分离涡附体并得到加强。基于试验结果,认为NS DBD进行三角翼前缘涡控制的机理是激励诱导分离剪切层周期性产生附体的分离涡,从而维持了上翼面大迎角时的涡升力。  相似文献   

2.
低速三角翼纳秒脉冲等离子体激励实验   总被引:2,自引:2,他引:2  
在30m/s来流速度下,进行了纳秒脉冲介质阻挡放电等离子体气动激励改善47°后掠角钝前缘三角翼气动特性的测力实验.为寻求优化的激励位置,实验研究了5种不同激励位置的流动控制效果.实验结果表明:激励位置对流动控制效果有决定性影响,位于三角翼前缘的等离子体气动激励能有效改善三角翼的气动特性,推迟失速,而上翼面不同展向位置的等离子体气动激励的流动控制效果十分微弱;激励频率是流动控制效果的重要影响因子,激励电压峰峰值为13kV时,激励频率为200Hz下的流动控制效果最好,在迎角30°时可使升力系数由1.31增大到1.44,增大9.6%,升阻比提高3.3%.  相似文献   

3.
在非定常激励下,等离子体DBD诱导涡是影响等离子体流动控制效果的关键因素,研究静止大气下DBD诱导涡结构特性对进一步理解等离子体DBD流动控制机理具有重要意义。采用高频PIV与高速纹影系统对静止大气下DBD诱导涡结构进行了研究,通过λ2法则分析了诱导涡涡核移动规律,获得了非定常激励下诱导涡的演化规律以及脉冲频率对诱导涡结构以及尺度的影响。在一定脉冲频率内,DBD诱导涡生成速率与脉冲频率一一对应,诱导涡涡核移动方向与壁面呈16°~21°,随着脉冲频率的增加,诱导涡尺度逐渐变小,且越来越靠近壁面。全文总结了不同脉冲频率下涡的相互作用以及黏性耗散对诱导涡发展过程的影响。  相似文献   

4.
等离子体流动控制研究进展与展望   总被引:25,自引:4,他引:25  
吴云  李应红 《航空学报》2015,36(2):381-405
等离子体流动控制是基于等离子体气动激励的新型主动流动控制技术,具有响应时间短、激励频带宽等显著技术优势,在改善飞行器/发动机空气动力特性方面具有广阔的应用前景,已成为国际上等离子体动力学与空气动力学交叉领域的前沿研究热点。鉴于此,从介质阻挡放电(DBD)、电弧放电等离子体气动激励特性,等离子体气动激励抑制流动分离、控制附面层、控制激波与激波/附面层干扰、控制压气机与涡轮内部流动、控制管道流动和飞行控制等方面,综合评述了国际上等离子体流动控制的研究进展情况;从创新等离子体气动激励方式,揭示等离子体气动激励与复杂流动的非定常耦合机制,突破等离子体流动控制系统关键技术等方面,对未来的发展进行展望。  相似文献   

5.
等离子体用于三角翼模型流动控制试验研究   总被引:2,自引:0,他引:2  
在不同试验风速下,通过风洞天平测力试验,研究了纳秒脉冲介质阻挡放电等离子体激励频率和激励电压对三角翼模型流动控制效果的影响。研究表明:激励频率和激励电压是等离子体流动控制效果的重要影响因素,在所研究的激励频率和激励电压范围中,当激励频率f=200Hz、激励电压为13kV时,等离子体激励可有效抑制三角翼前缘涡分离,流动控制效果最佳。试验风速30m/s时,最大升力系数由1.32增大到1.45,增大9.8%,最大升阻比提高2.9%;试验风速45m/s时,最大升力系数由1.33增大到1.45,增大9.0%,最大升阻比提高0.64%。  相似文献   

6.
NS-DBD激励控制非细长三角翼前缘涡仿真研究   总被引:2,自引:1,他引:1  
通过在三角翼前缘施加纳秒脉冲介质阻挡放电(NS-DBD)激励唯象学模型,进行了47°后掠角钝前缘三角翼流动控制的仿真。分析了不同迎角下升力和阻力系数的变化、流场结构的变化、以及激励诱导旋涡的演化过程。研究表明:施加无量纲激励频率F+=1.44的NS-DBD激励后,可明显提高三角翼失速前后的升力系数;同时阻力系数也有所增加,变化趋势与实验结果一致。激励在前缘分离剪切层处诱导产生流向涡,改变了前缘剪切层结构,使其向内卷吸;激励后时均流场形成了明显的负压峰值,前缘涡附着线外移,吸力面回流区减小。   相似文献   

7.
本文提出一种计算模型,用以计算亚声速大迎角下前缘分离机翼的流动和气动特性。通过在涡轴上分布线涡/线汇,这种计算模型包括了对前缘自由涡面、涡核及涡的卷吸作用的模拟。由于它是在非线性离散涡法的基础上发展起来的,因而具有计算过程简捷的特点。对三角翼及双三角翼气动特性的计算表明,计算值与实验值符合得相当好。计算还表明,在计算中计及和不计及涡的卷吸作用能引起计算载荷相当大的变化。  相似文献   

8.
脉冲等离子体气动激励抑制翼型吸力面流动分离的实验   总被引:18,自引:3,他引:18  
李应红  梁华  马清源  吴云  宋慧敏  武卫 《航空学报》2008,29(6):1429-1435
 为了提高等离子体气动激励控制附面层的能力,进行了脉冲等离子体气动激励抑制NACA 0015翼型失速分离的实验,研究了等离子体气动激励电压、位置、占空比和脉冲频率等对流动分离抑制效果的影响。在来流速度为72 m/s时,等离子体气动激励可以有效地抑制翼型吸力面的流动分离,翼型的升力增大约35%,翼型的临界失速迎角由18°增大到21°。实验结果表明:分离越严重,来流速度越大,有效抑制翼型失速分离的阈值电压越大;等离子体气动激励的最佳位置在流动分离起始点的前缘;调节占空比,可以在控制效果相当的情况下,降低等离子体气动激励所消耗的功率;当脉冲频率使斯特劳哈尔数等于1时,控制效果最佳。  相似文献   

9.
杨鹤森  赵光银  梁华  王博 《航空学报》2020,41(8):23605-023605
深入认识翼型动态失速,结合有效流动控制手段,对解决直升机、风力机桨叶等动态失速引起的高阻力、大低头力矩等气动问题具有重要意义。本文首先介绍了翼型动态失速的流场特点和危害,进而分析了缩减频率、雷诺数、马赫数以及翼型型面等参数对动态失速的影响,并在此基础上总结了常见的动态失速流动控制方法及其研究进展。等离子体气动激励易于产生快速、可控的宽频带气动激励,在动态失速控制领域具有潜力,本文着重介绍了等离子体气动激励动态失速控制的概念和流动控制原理,总结了近来年等离子体激励在翼型动态失速控制上的进展。  相似文献   

10.
谢理科  梁华  赵光银  魏彪  苏志  陈杰  田苗 《推进技术》2020,41(2):294-304
介质阻挡放电(DBD)均匀稳定、易于敷设,是机翼/翼型等离子体流动控制(PFC)中最常用的激励方式。射频介质阻挡放电激励频率高、放电功率大,且能在流场中产生明显的加热,应用潜力大。采用射频电源驱动DBD激励器产生等离子体,分析放电的体积力、热特性和诱导流场特性,开展了射频介质阻挡放电改善NACA 0015翼型气动性能的实验,研究了占空比、调制频率、载波频率和电源功率等参数对流动控制效果的影响规律。结果表明:射频等离子体激励的体积力效应随激励电压的增大而增加;射频等离子体激励产生的热量在诱导的流场中进行传导,加速流场;当来流速度为20m/s,Re=3.36×10~5时,在翼型前缘施加激励,使翼型临界失速迎角推迟1°,最大升力系数增大6.43%,且在过失速迎角下仍具有流动控制效果,使升力下降变缓;调制频率越大,控制效果越好;存在最佳占空比、载波频率和功率,占空比对流场控制效果的影响最显著,最佳占空比、载波频率和功率分别为20%,460kHz和50W。射频等离子体激励以体积力效应、热效应和诱导壁面射流改善失速流场,使得NACA0015翼型气动性能极大改善,流动分离得到有效控制。  相似文献   

11.
本文首次将新型丝状暴露电极DBD等离子激励器应用于大迎角下细长体非对称涡控制.丝状暴露电极的材料的选择对DBD推力以及推力效率至关重要,通过地面精细推力测量对丝状暴露电极等离子体激励器进行了优化,结果表明,本文研究材料中采用钨丝作为暴露电极,其推力效率最优;且随着电极直径从d=0.3 mm减小到d=0.08 mm,DB...  相似文献   

12.
等离子体气动激励诱导空气流动的PIV研究   总被引:2,自引:0,他引:2  
为了揭示等离子体气动激励与边界层相互作用的物理机制,作者进行了等离子体气动激励诱导空气流动的PIV研究。实验结果表明:毫秒、微秒等离子体气动激励诱导空气流动以“启动涡”和“壁面射流”的形式出现;当激励电压为12kV时,最大诱导速度约为3m/s;激励电压越大,“启动涡”和“壁面射流”的强度越大;脉冲激励的作用强度和作用范围要强于定常激励。该结论为提高等离子体流动控制的作用能力提供了指导。  相似文献   

13.
毫秒脉冲等离子体激励改善飞翼的气动性能实验   总被引:3,自引:0,他引:3  
在来流速度为30m/s时,进行了毫秒脉冲介质阻挡放电等离子体激励改善飞翼气动性能的风洞实验.等离子体激励器布置在飞翼前缘,峰峰值电压为9.5kV时,放电的脉冲能量在0.1mJ/cm量级.通过六分量测力天平测力研究了脉冲激励频率和占空比对升/阻力系数、升阻比和俯仰力矩系数的作用效果.结果表明:等离子体激励可以有效改善飞翼大攻角气动特性;在最佳无量纲脉冲激励频率F+≈1时,临界失速迎角由14°提高到17°,最大升力系数提高10%;占空比对流动控制效果影响较大,减小占空比可以降低能耗,实验中最佳占空比为5%;俯仰力矩系数的变化表明施加等离子体激励改善了飞翼纵向静稳定性.   相似文献   

14.
高负荷压气机叶栅分离结构及其等离子体流动控制   总被引:8,自引:0,他引:8  
赵小虎  吴云  李应红  赵勤 《航空学报》2012,33(2):208-219
 为揭示高负荷压气机叶栅内部流动损失的产生机理和分布规律以及等离子体气动激励的作用机制,利用拓扑分析和数值计算方法,从计算模型的建立与验证、基准流场的分离结构和等离子体流动控制3个方面展开研究;对总压损失系数分布、拓扑结构和表面流谱与空间流线分布以及旋涡结构进行分析,并开展了激励方式的优化分析.结果表明:随着攻角的增大,固壁面拓扑结构增加了3对奇点,吸力面流向激励改变了固壁面拓扑结构.当攻角为2°时,在吸力面拓扑结构中产生了一对奇点,打断了角区分离线,并引入了一条回流再附线.叶栅流道内部有5个主要涡系,尾缘径向对涡促进流体的展向流动,并成为吸力面倒流的主要组成部分;角涡是一个独立的涡系,其强度和尺度不受等离子体气动激励的影响.吸力面流向激励可以改善叶中流场,但对角区流动作用很小;端壁横向激励可以降低角区流动损失,对叶中流场作用有限;吸力面流向与端壁横向组合激励在整个叶高范围内均可以显著抑制流动分离;端壁横向流动对角区流动分离结构的影响大于吸力面附面层的分离.吸力面流向激励的优化明显降低,而端壁横向激励和组合激励的优化保持并增强了等离子体流动的控制效果.  相似文献   

15.
袁礼  吕志咏  吴建民 《航空学报》1990,11(9):515-520
 <正> 1.引盲 研究细长翼及其前缘襟翼大幅度振动所引起的气动力,有助于了解非定常流的一些特点,对未来高机动飞机的设计和飞行控制也有重要意义。计算这种情况的气动力,因涉及大尺度非定常分离流问题,需要能模拟自由涡面变化的位流方法,如常值偶极子格网法〔‘、涡格法山。〕和混合涡法〔‘〕。这些方法及其应用还在发展中〔,,。〕。为拓展位流方法的应用范国,本文就涡格法对单、双三角翼带振动前缘襟翼的气动力进行了探讨  相似文献   

16.
不同压力下微秒脉冲表面介质阻挡放电流场实验   总被引:2,自引:3,他引:2  
采用粒子图像测速(PIV)技术,在不同空气压力条件下,测量了微秒脉冲等离子体气动激励诱导流场的演化过程,分析了不同压力下的流场启动涡、流场结构和壁面射流.根据实验数据计算研究了诱导力随压力变化的空间分布趋势.实验结果表明:常压下和5500Pa压力下产生一个启动涡,19000Pa和11700Pa压力下产生两个启动涡.稳定流场结构随压力减少分别为L型、∽型和V型.压力减小,诱导流场对等离子体气动激励的响应时间减少,射流切向距离变短,距壁面法向距离增加.最大诱导力随压力降低减小,x坐标逐渐向表面介质阻挡放电(SDBD)激励器靠近.   相似文献   

17.
Review of flow control mechanisms of leading-edge vortices   总被引:4,自引:0,他引:4  
Vortex control concepts employed for slender and nonslender delta wings were reviewed. Important aspects of flow control include flow separation, vortex formation, flow reattachment, vortex breakdown, and vortex instabilities. The occurrence and relative importance of these phenomena strongly depend on the wing sweep angle. Various flow control methods were discussed: multiple vortices, control surfaces, blowing and suction, low-frequency and high-frequency excitation, feedback control, passive control with wing flexibility, and plasma actuators. For slender delta wings, control of vortex breakdown is achieved by modifications to swirl level and external pressure gradient acting on the vortex core. Effects of flow control methods on these two parameters were discussed, and their effectiveness was compared whenever possible. With the high-frequency excitation of the separated shear layer, reattachment and lift enhancement in the post-stall region is observed, which is orders of magnitude more effective than steady blowing. This effect is more pronounced for nonslender wings. Re-formation of vortices is possible with sufficient amplitude of forcing at the optimum frequency. Passive lift enhancement on flexible wings is due to the self-excited wing vibrations, which occur when the frequency of wing vibrations is close to the frequency of the shear layer instabilities, and promote flow reattachment.  相似文献   

18.
等离子体气动激励改善增升装置气动性能的试验   总被引:1,自引:0,他引:1  
梁华  吴云  李军  韩孟虎  马杰 《航空学报》2016,37(8):2603-2613
针对流动分离导致飞机增升装置气动性能下降的问题,进行了脉冲等离子体气动激励抑制增升装置流动分离的试验。研究了等离子体气动激励的频率、占空比及激励位置等参数对流动控制效果的影响。研究结果表明:等离子体气动激励通过加速近壁面附面层,增强附面层内的能量掺混,可有效抑制主翼和襟翼表面的流动分离,改善增升装置气动性能。在主翼前缘施加激励,可有效控制主翼表面大迎角下的失速分离,最大升力系数增大18.1%、临界失速攻角提高4°;在襟翼前缘施加激励,可有效抑制襟翼表面的流动分离,显著减小阻力,在4°迎角下,将试验模型阻力系数减小了28.7%,升力系数提高了7.1%。占空比对控制效果有较大影响,当占空比为10%~30%时,激励的非定常性更强,控制效果最好;占空比为50%的控制效果次之,占空比为100%时的控制效果最差。来流速度越高,逆压梯度越大,流动分离更难被抑制,控制效果也变差。该研究为在增升装置上应用等离子体流动控制技术提供了理论和方法的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号