共查询到18条相似文献,搜索用时 62 毫秒
1.
针对无人机视频跟踪过程中,目标占比较小且易受复杂背景信息干扰等问题,提出一种基于自适应融合网络的无人机目标跟踪算法。首先,基于感受野模块和残差网络构建深度网络模型,能够有效提取目标特征并增强特征的有效感受野;其次,提出一种多尺度自适应融合网络,能够自适应地融合深层网络的语义特征和浅层网络的细节特征,增强特征的表达能力;最后,将融合的目标特征输入到相关滤波模型中,计算出响应图的最大置信分数,从而确定跟踪目标位置。仿真实验结果表明,该算法在跟踪成功率和精确率上都达到了较高水平,有效提升了无人机目标跟踪算法性能。 相似文献
2.
基于自适应Siamese网络的无人机目标跟踪算法 总被引:1,自引:1,他引:1
无人机已被广泛应用到军事和民用领域,目标跟踪是无人机应用的关键技术之一。针对无人机跟踪过程中目标易发生形变、遮挡等问题,提出一种基于自适应Siamese网络的无人机目标跟踪算法。首先,利用2个卷积网络构建一个5层Siamese网络,通过对模板特征与当前帧图像特征进行卷积得到目标位置;其次,利用高斯混合模型对以往的预测结果进行建模并建立目标模板库;然后,从模板库中挑选出最可靠的目标模板并以此更新Siamese网络的匹配模板,使Siamese网络能够自适应目标的外观变化;最后,引入回归模型进一步精确目标位置,降低背景对网络性能的影响。仿真实验结果表明:该算法有效降低了形变、遮挡等情况对跟踪性能的影响,具有较高的准确率。 相似文献
3.
本文阐述了单目标跟踪的基本技术关键与步骤、目标跟踪算法的评价指标,重点介绍分析了基于孪生网络框架的目标跟踪技术原理以及应用表现,并对未来的行业发展提出展望. 相似文献
4.
针对无人机影像目标跟踪过程中常出现的目标方向变化、目标遮挡变化、样本多样性不足等问题,提出了一种基于形态自适应网络的无人机航空影像目标跟踪算法。首先使用基于数据驱动的方法对数据集进行扩增,添加了遮挡样本和多旋转角度样本,提高样本多样性;提出的形态自适应网络模型通过旋转不变约束改进深度置信网络,提取强表征能力的深度特征,使得模型能够自动适应目标形态变化,利用深度特征变换算法获取待检测目标的预定位区域,采用基于Q学习算法的搜索机制对目标进行自适应精准定位,使用深度森林分类器提取跟踪目标的类别信息,得到高精度的目标跟踪结果。在多个数据集上进行了对比实验,实验结果表明该算法能够达到较高的跟踪精度,可以适应目标旋转、目标遮挡等形态变化情况,具有较好的准确性和鲁棒性。 相似文献
5.
针对机动目标难以精确跟踪的问题,提出了一种可在线学习的循环Kalman神经网络跟踪算法。考虑到状态转移矩阵、量测噪声和过程噪声矩阵在机动目标跟踪中难以实时、离线估计,且在实际应用中对应数据集获取成本高,因此使用在线学习的神经网络对其进行实时估计。由于Kalman滤波算法本身是一种循环结构,将简单的全连接层网络与其嵌合,全连接层网络实时输出状态转移矩阵、量测和过程噪声矩阵估计,构成一种广义的循环Kalman神经网络,根据网络最终输出的位置估计进行端到端的在线学习,并且通过理论推导证明了其在线学习的可行性。将提出的循环Kalman神经网络同3种经典机动目标算法进行了仿真对比,结果表明:循环Kalman神经网络跟踪需要很少的先验信息,在最优区域内较之其他3种算法具有最高的跟踪精度和鲁棒性,并且具有效率高、训练成本低以及可扩展性强的特点。 相似文献
6.
针对无人机(UAV)跟踪过程中目标的尺寸小、尺度变化大和相似物干扰等问题,提出了一种基于多尺度注意力和特征融合的自适应无人机航拍目标跟踪算法。首先,考虑到无人机视角下干扰信息多,构建了深层多样化特征提取网络,提供鲁棒表征目标的语义特征和多样化特征;其次,设计的多尺度注意力模块,抑制干扰信息的同时保留了不同尺度的目标信息;然后特征融合模块将不同层特征进行融合,有效整合了细节信息和语义信息;最后,使用多个基于无锚框策略的区域建议模块自适应感知目标的尺度变化,充分利用整合的特征信息实现对目标的精准定位与稳定跟踪。实验结果表明:该算法在数据集上的成功率和准确率为61.7%和81.5%,速度为40.5 frame/s。该算法对目标的辨别能力、尺度感知能力和抗干扰能力明显增强,能有效应对无人机跟踪过程中的常见挑战。 相似文献
7.
8.
目标检测是提高无人机(UAV)感知能力的关键技术之一,其研究对于无人机的应用有着重要意义。与基于手工特征的传统方法相比,基于卷积神经网络的深度学习方法具有强大的特征学习和表达能力,成为目前目标检测任务的主流算法。近年来,目标检测技术已经在自然场景图像上取得了一系列突破性进展,在无人机领域的研究也逐渐成为热点。首先系统阐述了基于深度学习的目标检测算法的研究进展,并总结了相关算法的优缺点。对常见的航空影像数据集进行了梳理并介绍了迁移学习的方法;从无人机影像背景复杂、目标较小、视场大、目标具有旋转性的特点出发,对无人机目标检测在近期的研究进行了归纳和分析。最后讨论了存在的问题和未来可能的发展方向。 相似文献
9.
10.
目标跟踪在自动驾驶和智能监控系统等实时视觉应用中发挥着重要作用。在遮挡、相似干扰等情况下,传统的基于相关滤波的跟踪算法容易发生漂移,鲁棒性有待进一步提高。基于此,提出了一种扩展特征描述的检测辅助核相关滤波目标跟踪架构。首先,在传统的核相关滤波目标跟踪算法的基础上,通过目标检测辅助对跟踪结果进行质量判断,实现对遮挡以及目标丢失的判别;然后通过拓展特征模板的构建与匹配,实现抗干扰相似目标判断及目标重定位;最终,以行人跟踪为例进行了试验,分别通过OTB数据及验证试验和移动机器人平台视觉跟踪验证试验,验证了算法的可行性,并对算法的跟踪性能进行了测试。试验结果表明,所提方法能够稳定地跟踪移动目标,对遮挡、相似干扰具有较强的鲁棒性。 相似文献
11.
一种新的基于机动检测的机动目标跟踪算法 总被引:3,自引:0,他引:3
针对Kalman滤波跟踪机动目标发散和目前多数自适应Kalman滤波算法对运动模型适应性不强的问题,提出了一种新的基于机动检测的机动目标跟踪算法,通过实时自适应的改变滤波模型提高对机动目标跟踪精度。对这种方法与Kalman滤波算法进行了计算机仿真比较,结果表明,该方法计算量小,可实时精确地自适应匹配目标的运动模型,可实现对机动目标稳定可靠的跟踪。 相似文献
12.
针对现有随机有限集(RFS)滤波器在低信噪比环境下对衍生目标跟踪性能严重下降的问题,提出了一种基于Delta扩展标签多伯努利(δ-GLMB)滤波器的改进算法。基于随机集理论和伯努利衍生模型,推导了新的预测方程,并采用了假设裁剪及分组手段和多伯努利近似技术以降低算法的计算量。针对假设增多引起的虚警问题,将多帧平滑思想和算法相结合,利用标签信息对新目标进行回溯处理。仿真结果表明,所提算法能对目标数目进行无偏估计,在低探测概率和强杂波环境下性能明显优于概率假设密度(PHD)算法,计算开销在衍生初始阶段增长快于PHD,目标较分散时低于PHD。 相似文献
13.
At present, current filters can basically solve the filtering problem in target tracking, but there are still many problems such as too many filtering variants, too many filtering forms, loosely coupled with the target motion model, and so on. To solve the above problems, we carry out crossapplication research of artificial intelligence theory and methods in the field of tracking filters. We firstly analyze the computation graphs of typical a-β and Kalman. Through analysis, it is concluded that ... 相似文献
14.
目标威胁评估是空战对抗过程中的关键环节。由于影响空战目标威胁评估的因素复杂多样,且指标之间存在相关性,导致传统的评估算法无法得到准确客观的评估结果。由此,提出了一种基于主成分分析法和改进粒子群算法优化的极限学习机(PCA-MPSO-ELM)的目标威胁评估算法。首先,综合分析了影响目标威胁程度的指标,利用主成分分析法对原始评估指标进行线性变化处理得到综合变量,消除了评估指标之间的相关性,实现了对评估数据的降维;在此基础上,构建ELM神经网络并利用改进的粒子群算法优化极限学习机的输入权值和阈值,提高了目标威胁评估模型的精度。最后,在空战训练测量仪中选取空战对抗数据,利用威胁指数法构造了目标威胁评估样本数据,通过仿真实验分析了PCA-MPSO-ELM算法的精度和实时性,结果表明所提算法可以快速准确地进行空战目标威胁评估。 相似文献
15.
基于飞行器图像的目标跟踪方法研究 总被引:6,自引:0,他引:6
提出了一种利用飞行器图像进行目标跟踪的方法,建立了飞行器图像跟踪系统。该系统利用一种云台控制算法搜索飞行器的图像,通过对飞行器图像的边缘检测、图像中心点提取等处理,实现了飞行器图像定位。理论计算和实际应用表明,该系统可以对低马赫数和高马赫数飞行器进行图像跟踪。 相似文献
16.
针对机动模式复杂多变的高超声速滑翔目标跟踪问题,提出了一种机动频率自适应跟踪方法。采用介于常速度和常加速度模型之间的Singer模型来表征目标气动力加速度的变化,从而建立跟踪系统的状态方程。根据地基雷达量测量获得系统的量测方程,鉴于距离和角度信息的量级相差较大将其由球形量测量转换为位置量测量。为了适应高超声速滑翔目标灵活多样的机动模式,基于正交性原理和无迹卡尔曼滤波算法实现了Singer模型中机动频率参数的自适应。利用滤波信息计算得到能够反映状态模型误差大小的调整因子,用于放大Singer模型中的机动频率,进而调整状态方程的过程噪声以降低模型误差。通过对2种典型机动轨迹的跟踪仿真,并与交互式多模型等方法进行比较,结果表明所提方法的跟踪精度高、计算量小,能够较好地适应阶跃机动和连续幅值变化的机动。 相似文献
17.
准确的弹道系数辨识和精确的目标状态估计是再入目标高精度跟踪与高可靠识别的关键。一方面,状态估计的误差会造成模型参数(弹道系数)的辨识风险;另一方面,模型参数的辨识偏差又会导致模型失配从而降低目标状态的估计精度。因此,需要实现再入目标的状态估计和参数辨识的联合优化。针对再入目标弹道系数未知情形,提出了一种基于期望最大化(EM)框架并采用粒子滤波(PF)平滑器实现的PF-EM联合优化算法。在E步基于粒子平滑器得到目标状态的后验平滑估计,M步采用数值优化算法更新上一次迭代的弹道系数,通过E步和M步的不断迭代,以保证状态估计和弹道系数辨识的一致性。算法仿真对比表明:所提算法的状态估计和参数辨识精度均优于传统的状态增广算法。 相似文献
18.
以复杂背景下空中飞行器的鲁棒视觉跟踪问题为研究背景,为解决现有跟踪方法目标表征模型不够精确,算法鲁棒性严重受到目标形变、宽高比变化、复杂背景等因素干扰的问题,提出了建模跟踪场景中独立物体的显著性特性,用于构建精确的目标模型。提出的显著性估计方法有别于传统的单帧检测方法,利用跟踪算法提供的背景先验知识以及多帧图像观测数据,使用时空联合的方式进行建模估计,其结果用来指导目标跟踪算法选取有效视觉特征,建立精确目标表征模型,减小背景区域对算法模型的干扰。实验表明,提出的方法为上述难点问题提供了有效的解决方案,对空中飞行器的跟踪精度与鲁棒性优于大多数最先进的主流方法,在其他类型的目标跟踪任务中也有十分优越的性能表现。 相似文献