共查询到19条相似文献,搜索用时 46 毫秒
1.
针对无人机视频跟踪过程中,目标占比较小且易受复杂背景信息干扰等问题,提出一种基于自适应融合网络的无人机目标跟踪算法。首先,基于感受野模块和残差网络构建深度网络模型,能够有效提取目标特征并增强特征的有效感受野;其次,提出一种多尺度自适应融合网络,能够自适应地融合深层网络的语义特征和浅层网络的细节特征,增强特征的表达能力;最后,将融合的目标特征输入到相关滤波模型中,计算出响应图的最大置信分数,从而确定跟踪目标位置。仿真实验结果表明,该算法在跟踪成功率和精确率上都达到了较高水平,有效提升了无人机目标跟踪算法性能。 相似文献
2.
本文阐述了单目标跟踪的基本技术关键与步骤、目标跟踪算法的评价指标,重点介绍分析了基于孪生网络框架的目标跟踪技术原理以及应用表现,并对未来的行业发展提出展望. 相似文献
3.
基于自适应Siamese网络的无人机目标跟踪算法 总被引:1,自引:1,他引:1
无人机已被广泛应用到军事和民用领域,目标跟踪是无人机应用的关键技术之一。针对无人机跟踪过程中目标易发生形变、遮挡等问题,提出一种基于自适应Siamese网络的无人机目标跟踪算法。首先,利用2个卷积网络构建一个5层Siamese网络,通过对模板特征与当前帧图像特征进行卷积得到目标位置;其次,利用高斯混合模型对以往的预测结果进行建模并建立目标模板库;然后,从模板库中挑选出最可靠的目标模板并以此更新Siamese网络的匹配模板,使Siamese网络能够自适应目标的外观变化;最后,引入回归模型进一步精确目标位置,降低背景对网络性能的影响。仿真实验结果表明:该算法有效降低了形变、遮挡等情况对跟踪性能的影响,具有较高的准确率。 相似文献
4.
针对无人机影像目标跟踪过程中常出现的目标方向变化、目标遮挡变化、样本多样性不足等问题,提出了一种基于形态自适应网络的无人机航空影像目标跟踪算法。首先使用基于数据驱动的方法对数据集进行扩增,添加了遮挡样本和多旋转角度样本,提高样本多样性;提出的形态自适应网络模型通过旋转不变约束改进深度置信网络,提取强表征能力的深度特征,使得模型能够自动适应目标形态变化,利用深度特征变换算法获取待检测目标的预定位区域,采用基于Q学习算法的搜索机制对目标进行自适应精准定位,使用深度森林分类器提取跟踪目标的类别信息,得到高精度的目标跟踪结果。在多个数据集上进行了对比实验,实验结果表明该算法能够达到较高的跟踪精度,可以适应目标旋转、目标遮挡等形态变化情况,具有较好的准确性和鲁棒性。 相似文献
5.
针对机动目标难以精确跟踪的问题,提出了一种可在线学习的循环Kalman神经网络跟踪算法。考虑到状态转移矩阵、量测噪声和过程噪声矩阵在机动目标跟踪中难以实时、离线估计,且在实际应用中对应数据集获取成本高,因此使用在线学习的神经网络对其进行实时估计。由于Kalman滤波算法本身是一种循环结构,将简单的全连接层网络与其嵌合,全连接层网络实时输出状态转移矩阵、量测和过程噪声矩阵估计,构成一种广义的循环Kalman神经网络,根据网络最终输出的位置估计进行端到端的在线学习,并且通过理论推导证明了其在线学习的可行性。将提出的循环Kalman神经网络同3种经典机动目标算法进行了仿真对比,结果表明:循环Kalman神经网络跟踪需要很少的先验信息,在最优区域内较之其他3种算法具有最高的跟踪精度和鲁棒性,并且具有效率高、训练成本低以及可扩展性强的特点。 相似文献
6.
针对无人机(UAV)跟踪过程中目标的尺寸小、尺度变化大和相似物干扰等问题,提出了一种基于多尺度注意力和特征融合的自适应无人机航拍目标跟踪算法。首先,考虑到无人机视角下干扰信息多,构建了深层多样化特征提取网络,提供鲁棒表征目标的语义特征和多样化特征;其次,设计的多尺度注意力模块,抑制干扰信息的同时保留了不同尺度的目标信息;然后特征融合模块将不同层特征进行融合,有效整合了细节信息和语义信息;最后,使用多个基于无锚框策略的区域建议模块自适应感知目标的尺度变化,充分利用整合的特征信息实现对目标的精准定位与稳定跟踪。实验结果表明:该算法在数据集上的成功率和准确率为61.7%和81.5%,速度为40.5 frame/s。该算法对目标的辨别能力、尺度感知能力和抗干扰能力明显增强,能有效应对无人机跟踪过程中的常见挑战。 相似文献
7.
8.
针对无人机在跟踪地面机动目标时,目标的机动导致无法得到准确的目标状态信息的问题,以无迹卡尔曼滤波(UKF)算法为基础,结合交互多模型(IMM)算法与强跟踪滤波器的思想,提出了一种基于IMM的强跟踪无迹卡尔曼滤波(IMM-STUKF)算法的无人机对地目标状态估计算法。仿真表明,在无人机飞行速度约30 m/s、目标速度约7 m/s、角度与距离量测误差分别为1°和15 m时,相较于IMM-UKF,基于IMM-STUKF的无人机对地机动目标位置估计精度提升了约10%,速度估计误差降低了约50%。 相似文献
9.
目标检测是提高无人机(UAV)感知能力的关键技术之一,其研究对于无人机的应用有着重要意义。与基于手工特征的传统方法相比,基于卷积神经网络的深度学习方法具有强大的特征学习和表达能力,成为目前目标检测任务的主流算法。近年来,目标检测技术已经在自然场景图像上取得了一系列突破性进展,在无人机领域的研究也逐渐成为热点。首先系统阐述了基于深度学习的目标检测算法的研究进展,并总结了相关算法的优缺点。对常见的航空影像数据集进行了梳理并介绍了迁移学习的方法;从无人机影像背景复杂、目标较小、视场大、目标具有旋转性的特点出发,对无人机目标检测在近期的研究进行了归纳和分析。最后讨论了存在的问题和未来可能的发展方向。 相似文献
10.
目标跟踪在自动驾驶和智能监控系统等实时视觉应用中发挥着重要作用。在遮挡、相似干扰等情况下,传统的基于相关滤波的跟踪算法容易发生漂移,鲁棒性有待进一步提高。基于此,提出了一种扩展特征描述的检测辅助核相关滤波目标跟踪架构。首先,在传统的核相关滤波目标跟踪算法的基础上,通过目标检测辅助对跟踪结果进行质量判断,实现对遮挡以及目标丢失的判别;然后通过拓展特征模板的构建与匹配,实现抗干扰相似目标判断及目标重定位;最终,以行人跟踪为例进行了试验,分别通过OTB数据及验证试验和移动机器人平台视觉跟踪验证试验,验证了算法的可行性,并对算法的跟踪性能进行了测试。试验结果表明,所提方法能够稳定地跟踪移动目标,对遮挡、相似干扰具有较强的鲁棒性。 相似文献
11.
针对在目标跟踪中单模型跟踪算法难以应对目标运动形式的变化,而多模型跟踪算法存在结构固定、跟踪精度被非匹配模型削弱且模型切换缓慢的矛盾,文章提出了一种基于人工神经网络的多模型目标跟踪算法。通过分析目标几种基本运动模式的轨迹特点,归纳出目标运动轨迹的特征向量。利用训练好的BP神经网络对滑窗里的轨迹段进行运动模型识别,按结果进行跟踪模型切换,达到使跟踪算法实时适应目标运动状态的目的。仿真结果证明了该算法的有效性,且与传统的多模型算法相比,具有结构更加简单、更强的灵活性和拓展性的特点。 相似文献
12.
目标威胁评估是空战对抗过程中的关键环节。由于影响空战目标威胁评估的因素复杂多样,且指标之间存在相关性,导致传统的评估算法无法得到准确客观的评估结果。由此,提出了一种基于主成分分析法和改进粒子群算法优化的极限学习机(PCA-MPSO-ELM)的目标威胁评估算法。首先,综合分析了影响目标威胁程度的指标,利用主成分分析法对原始评估指标进行线性变化处理得到综合变量,消除了评估指标之间的相关性,实现了对评估数据的降维;在此基础上,构建ELM神经网络并利用改进的粒子群算法优化极限学习机的输入权值和阈值,提高了目标威胁评估模型的精度。最后,在空战训练测量仪中选取空战对抗数据,利用威胁指数法构造了目标威胁评估样本数据,通过仿真实验分析了PCA-MPSO-ELM算法的精度和实时性,结果表明所提算法可以快速准确地进行空战目标威胁评估。 相似文献
13.
作为航空装备的重要传动部件,齿轮箱的故障诊断对保障装备可靠持续适航具有至关重要的作用。随着人工智能技术的不断发展,基于深度学习的方法成为了领域内的研究热点。然而,深度神经网络对超参数设置和训练数据量有严格的要求,难以满足实际工业中快速、准确与稳定的诊断需求。针对此问题,提出了一种基于改进深度森林的诊断方法,实现小训练样本下齿轮箱的多种类混合故障的高效诊断。针对旋转机械振动信号单样本数据的长特性与深度森林模型数据处理成本高的矛盾,设计了基于主成分分析特征提取的深度森林模型,解决原始模型中的数据计算冗余问题。同时,改进的深度森林模型提高了多粒度扫描与级联森林中的数据传递与处理能力,在保障数据多样性的同时,增强模型内的特征代表性,从而提高算法的运行效率和诊断性能。最后,通过控制数据集与训练样本比例变量,开展小训练样本下齿轮箱故障诊断实验研究。结果表明,在训练-总数据比例为50%和10%条件下,所提方法平均诊断精度高达97.3%和82.8%,验证了所提方法的有效性。同时,通过对比研究,所提方法诊断性能优于现有的齿轮箱智能故障诊断方法。 相似文献
14.
作战飞机效能的评估是防空作战中的重要问题,简述了效能评估的各种方法,建立参数效能模型时,首先要挑选特征参数,用主成分分析方法选择武器的特征参数。利用支持向量机建立了作战飞机的参数效能模型,通过实例与神经网络法的结果进行了比较,结果表明支持向量机比较精确和简单。 相似文献
15.
16.
17.
18.
针对密集杂波和复杂多目标情况下,特征匹配跟踪算法定位跟踪精度较低的问题,提出一种改进的特征匹配雷达视频运动目标跟踪算法。首先,从单帧雷达图像检测结果中提取目标的面积、位置、不变矩信息,在运动目标得到判定后,利用卡尔曼滤波的预测位置以及上一帧特征信息进行目标匹配;然后,根据匹配位置和预测位置给出目标估计位置,并进行特征信息更新;最后,输出目标的特征信息、位置信息和运动参数。利用某型导航雷达上采集的实测数据验证了算法的有效性。 相似文献
19.
一种用于机动目标跟踪的新自适应卡尔曼滤波算法 总被引:3,自引:0,他引:3
在“当前”模型的概念下,从工程实现的背景出发,提出了一种用于机动目标跟踪的新自适应卡尔曼滤波算法。基本思想是通过对加速度项引入加权因子来进一步突出“当前”信息的作用,为“当前”模型提供更加准确的“当前”信息。蒙特卡罗模拟结果表明,算法不仅克服了“当前”模型自适应卡尔曼滤波算法的缺陷,而且使跟踪性能得到进一步的提高。 相似文献