首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The general features of the solar particle composition now seem to be clear. The two most abundant components, protons and helium nuclei, have different velocity spectra, similar, but not exactly identical rigidity spectra, and varying relative abundances. The multiply charged nuclei, on the other hand, appear to have the same spectral shape and relative abundances each time measurements are made, at least in the region from 42 to 135 MeV/nucleon. Further, these relative abundances seem to reflect those of the solar atmosphere insofar as comparison can be made. Electrons are rare, but high energy electrons are not expected to be plentiful due to the probable high rate of energy loss caused by synchrotron radiation at the sun. Energetic neutrons were also not expected in large quantity and have not been observed. Finally, there is positive evidence that very small quantities of deuterons exist, probably in an amount which is about 10-3 or less of the proton abundance.The experimental data indicate that the propagation phenomenon is not purely rigidity dependent. Although the propagation of solar particles is still not well understood, the development of theories which take into account both the general magnetic field and the inhomogeneities in the field seem to hold some promise of explaining the experimental results. The composition data have also established important restraints which any acceleration theory must satisfy, and thereby contributed greatly to the very difficult problem of determining the acceleration mechanism.The similarity of the relative abundance of the energetic solar particles and the nuclei in the sun's photosphere suggested the possibility of having a new means of estimating the solar neon and helium abundances. This very interesting possibility will have to be explored by further testing of the composition of future solar particle events. Finally, it was seen that the composition was a very strong argument against most stars being the principal source of high energy non-solar cosmic rays, and, therefore, special sources, such as supernovae or possibly quasistellar objects, should be considered as much more likely prospects for the origin of cosmic rays.The results which have been obtained thus far on the composition of solar cosmic rays have indicated that further research in this area of study should be very rewarding and of value to many fields of physics. Further data on the composition and relative, as well as absolute, energy spectra of the various components are needed throughout many events. More experiments also should be performed to determine the properties of the rare components, deuterons, tritons, He3 nuclei, electrons, neutrons, and the heavier nuclei. When these experiments are complete, the knowledge which is needed to aid in answering the solar and astrophysical problems discussed in this review should be at hand.  相似文献   

2.
Webber  W.R. 《Space Science Reviews》1998,86(1-4):239-256
The CRIS experiment on ACE, with its excellent charge and mass resolution and a geometrical factor ∼10× that of any previous experiment, holds the promise of rewriting the book on galactic cosmic-ray abundance studies. Translating these measurements into precise cosmic-ray source abundances and using these measurements to determine more accurately the propagation history of cosmic rays is a different matter, however. In many important cases these studies will be limited by the accuracy of the nuclear cross- sections that determine how the cosmic-ray composition is modified as it traverses the interstellar matter. In this paper we will discuss these cross-sections and how well they are known as a function of the energy and the charge and mass of the cosmic-ray nuclei. This will then be used to discuss what new limits can be expected on several contemporary problems of interest in cosmic rays from the CRIS measurements. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The isotopic abundances of the Galactic cosmic radiation measured in the Heliosphere provide unique information on acceleration, propagation modes and containment times in the Galactic magnetic fields. Nuclear interactions with interstellar matter lead to observable γ-radiation production and, thus, to direct information on cosmic ray distribution throughout the Galaxy and its magnetic halo. The COSPIN High Energy Telescope (HET) has excellent isotopic resolution from hydrogen to nickel over the ten year period of Ulysses in space. Based on our recent work, we discuss the implications for modeling the acceleration and propagation of the cosmic radiation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The interstellar cloud surrounding the solar system regulates the galactic environment of the Sun, and determines the boundary conditions of the heliosphere. Both the Sun and interstellar clouds move through space, so these boundary conditions change with time. Data and theoretical models now support densities in the cloud surrounding the solar system of n(H0)=0.22±0.06 cm−3, and n(e−)∼0.1 cm−3, with larger values allowed for n(H0) by radiative transfer considerations. Ulysses and Extreme Ultraviolet Explorer satellite He0 data yield a cloud temperature of 6400 K. Nearby interstellar gas appears to be structured and inhomogeneous. The interstellar gas in the Local Fluff cloud complex exhibits elemental abundance patterns in which refractory elements are enhanced over the depleted abundances found in cold disk gas. Within a few parsecs of the Sun, inconclusive evidence for factors of 2–5 variation in Mg+ and Fe+ gas phase abundances is found, providing evidence for variable grain destruction. In principle, photoionization calculations for the surrounding cloud can be compared with elemental abundances found in the pickup ion and anomalous cosmic-ray populations to model cloud properties, including ionization, reference abundances, and radiation field. Observations of the hydrogen pile up at the nose of the heliosphere are consistent with a barely subsonic motion of the heliosphere with respect to the surrounding interstellar cloud. Uncertainties on the velocity vector of the cloud that surrounds the solar system indicate that it is uncertain as to whether the Sun and α Cen are or are not immersed in the same interstellar cloud. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Stone  E.C.  Cohen  C.M.S.  Cook  W.R.  Cummings  A.C.  Gauld  B.  Kecman  B.  Leske  R.A.  Mewaldt  R.A.  Thayer  M.R.  Dougherty  B.L.  Grumm  R.L.  Milliken  B.D.  Radocinski  R.G.  Wiedenbeck  M.E.  Christian  E.R.  Shuman  S.  von Rosenvinge  T.T. 《Space Science Reviews》1998,86(1-4):357-408
The Solar Isotope Spectrometer (SIS), one of nine instruments on the Advanced Composition Explorer (ACE), is designed to provide high- resolution measurements of the isotopic composition of energetic nuclei from He to Zn (Z=2 to 30) over the energy range from ∼10 to ∼100 MeV nucl−1. During large solar events SIS will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona and to study particle acceleration processes. During solar quiet times SIS will measure the isotopes of low-energy cosmic rays from the Galaxy and isotopes of the anomalous cosmic-ray component, which originates in the nearby interstellar medium. SIS has two telescopes composed of silicon solid-state detectors that provide measurements of the nuclear charge, mass, and kinetic energy of incident nuclei. Within each telescope, particle trajectories are measured with a pair of two-dimensional silicon-strip detectors instrumented with custom, very large-scale integrated (VLSI) electronics to provide both position and energy-loss measurements. SIS was especially designed to achieve excellent mass resolution under the extreme, high flux conditions encountered in large solar particle events. It provides a geometry factor of ∼40 cm2 sr, significantly greater than earlier solar particle isotope spectrometers. A microprocessor controls the instrument operation, sorts events into prioritized buffers on the basis of their charge, range, angle of incidence, and quality of trajectory determination, and formats data for readout by the spacecraft. This paper describes the design and operation of SIS and the scientific objectives that the instrument will address. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Greenberg  J. Mayo  Li  Aigen 《Space Science Reviews》1999,90(1-2):149-161
The chemical composition of comet nuclei derived from current data on interstellar dust ingredients and comet dust and coma molecules are shown to be substantially consistent with each other in both refractory and volatile components. When limited by relative cosmic abundances the water in comet nuclei is constrained to be close to 30% by mass and the refractory to volatile ratio is close to 1:1. The morphological structure of comet nuclei, as deduced from comet dust infrared continuum and spectral emission properties, is described by a fluffy (porous) aggregate of tenth micron silicate core-organic refractory mantle particle on which outer mantles of predominantly H2O ices contain embedded carbonaceous and polycyclic aromatic hydrocarbon (PAH) type particles of size in the of 1 - 10nm range. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The galactic cosmic rays arriving near Earth, which include both stable and long-lived nuclides from throughout the periodic table, consist of a mix of stellar nucleosynthesis products accelerated by shocks in the interstellar medium (ISM) and fragmentation products made by high-energy collisions during propagation through the ISM. Through the study of the composition and spectra of a variety of elements and isotopes in this diverse sample, models have been developed for the origin, acceleration, and transport of galactic cosmic rays. We present an overview of the current understanding of these topics emphasizing the insights that have been gained through investigations in the charge and energy ranges Z≲30 and E/M≲1 GeV/nuc, and particularly those using data obtained from the Cosmic Ray Isotope Spectrometer on NASA’s Advanced Composition Explorer mission.  相似文献   

8.
Interstellar atoms penetrate deep into the heliosphere after passing through the heliospheric interface—the region of the interaction of the solar wind with the interstellar medium. The heliospheric interface serves as a filter for the interstellar atoms of hydrogen and oxygen, and, to a lesser extent, nitrogen, due to their coupling with interstellar and heliospheric plasmas by charge exchange and electron impact ionization. The filtration has great importance for the determination of local interstellar abundances of these elements, which becomes now possible due to measurements of interstellar pickup by Ulysses and ACE, and anomalous cosmic rays by Voyagers, Ulysses, ACE, SAMPEX and Wind. The filtration of the different elements depends on the level of their coupling with the plasma in the interaction region. The recent studies of the filtration of the interstellar atoms in the heliospheric interface region is reviewed in this paper. The dependence of the filtration on the local interstellar proton and H atom number densities is discussed and the roles of the charge exchange and electron impact ionization on the filtration are evaluated. The influence of electron temperature in the inner heliosheath on the filtration process is discussed as well. Using the filtration coefficients obtained from the modeling and SWICS/Ulysses pickup ion measurements, the local interstellar abundances of the considered elements are determined.  相似文献   

9.
The ISO-SWS instrument offering a large wavelength coverage and a resolution well adapted to the solid phase has changed our knowledge of the physical-chemical properties of ices in space. The discovery of many new ice features was reported and the comparison with dedicated laboratory experiments allowed the determination of more accurate abundances of major ice components. The presence of CO2 ice has recently been confirmed with the SWS (Short Wavelength Spectrometer) as a dominant ice component of interstellar grain mantles. The bending mode of CO2 ice shows a particular triple-peak structure which provides first evidence for extensive ice segregation in the line-of-sight toward massive protostars. A comparison of interstellar and cometary ices using recent ISO data and ground-based measurements has revealed important similarities but also indicated that comets contain, beside pristine interstellar material, admixtures of processed material. The investigation of molecules in interstellar clouds is essential to reveal the link between dust in the interstellar medium and in the Solar System. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
More than 20 years ago, in 1972, anomalous flux increases of helium and heavy ions were discovered during solar quiet times. These flux increases in the energy range<50 MeV/nucleon showed peculiar elemental abundances and energy spectra, e.g. a C/O ratio0.1 around 10 MeV/nucleon, different from the abundances of solar energetic particles and galactic cosmic rays. Since then, this anomalous cosmic ray component (ACR) has been studied extensively and at least six elements have been found (He,N,O,Ne,Ar,C) whose energy spectra show anomalous increases above the quiet time solar and galactic energetic particle spectrum. There have been a number of models proposed to explain the ACR component. The presently most plausible theory for the origin of ACR ions identifies neutral interstellar gas as the source material. After penetration into the inner heliosphere, the neutral particles are ionized by solar UV radiation and by charge exchange reactions with the solar wind protons. After ionization, the now singly charged ions are picked up by the interplanetary magnetic field and are then convected with the solar wind to the outer solar system. There, the ions are accelerated to high energies, possibly at the solar wind termination shock, and then propagate back into the inner heliosphere. A unique prediction of this model is that ACR ions should be singly ionized. Meanwhile, several predictions of this model have been verified, e.g. low energy pick-up ions have been detected and the single charge of ACR ions in the energy range at MeV/nucleon has been observed. However, some important aspects such as, for example, the importance of drift effects for the acceleration and propagation process and the location of the acceleration site are still under debate. In this paper the present status of experimental and theoretical results on the ACR component are reviewed and constraints on the acceleration process derived from the newly available ACR ionic charge measurements will be presented. Possible new constraints provided by correlative measurements at high and low latitudes during the upcoming solar pole passes of the ULYSSES spacecraft in 1994 and 1995 will be discussed.  相似文献   

11.
Methods and results of investigations of the interstellar gas inside the heliosphere are summarized and discussed. Flow parameters of H and He and the relative abundances of H, He, N, O, and Ne in the distant heliosphere are given. Charge exchange processes in front of the heliosphere affect the flow of hydrogen and oxygen through the heliopause. The speed of hydrogen is reduced by 6 km/s, and screening leads to a reduction of the O/He and H/He ratios in the neutral gas entering the heliosphere. When the screening effect and the acceleration processes leading to the anomalous cosmic rays (ACR) are sufficiently understood, abundances in the LIC can be derived from measurements inside the heliosphere. Since isotopic ratios are virtually not changed by screening or by EUV and solar wind ionisation, relative abundances of isotopes in the gaseous phase of the LIC can be determined with no or minor correction from investigations of the neutral gas, pickup ions and ACR particles.  相似文献   

12.
Gloeckler  G.  Cain  J.  Ipavich  F.M.  Tums  E.O.  Bedini  P.  Fisk  L.A.  Zurbuchen  T.H.  Bochsler  P.  Fischer  J.  Wimmer-Schweingruber  R.F.  Geiss  J.  Kallenbach  R. 《Space Science Reviews》1998,86(1-4):497-539
The Solar Wind Ion Composition Spectrometer (SWICS) and the Solar Wind Ions Mass Spectrometer (SWIMS) on ACE are instruments optimized for measurements of the chemical and isotopic composition of solar and interstellar matter. SWICS determines uniquely the chemical and ionic-charge composition of the solar wind, the thermal and mean speeds of all major solar wind ions from H through Fe at all solar wind speeds above 300 km s−1 (protons) and 170 km s−1 (Fe+16), and resolves H and He isotopes of both solar and interstellar sources. SWICS will measure the distribution functions of both the interstellar cloud and dust cloud pickup ions up to energies of 100 keV e−1. SWIMS will measure the chemical, isotopic and charge state composition of the solar wind for every element between He and Ni. Each of the two instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made with SWICS and SWIMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition, SWICS and SWIMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; (vii) the physics of the pickup process of interstellar He in the solar wind; and (viii) the spatial distribution and characteristics of sources of neutral matter in the inner heliosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Solar chemical abundances are determined by comparing solar photospheric spectra with synthetic ones obtained for different sets of abundances and physical conditions. Although such inferred results are reliable, they are model dependent. Therefore, one compares them with the values for the local interstellar medium (LISM). The argument is that they must be similar, but even for LISM abundance determinations models play a fundamental role (i.e., temperature fluctuations, clumpiness, photon leaks). There are still two possible comparisons—one with the meteoritic values and the second with solar wind abundances. In this work we derive a first estimation of the solar wind element ratios of sulfur relative to calcium and magnesium, two neighboring low-FIP elements, using 10 years of CELIAS/MTOF data. We compare the sulfur abundance with the abundance determined from spectroscopic observations and from solar energetic particles. Sulfur is a moderately volatile element, hence, meteoritic sulfur may be depleted relative to non-volatile elements, if compared to its original solar system value.  相似文献   

14.
Pickup ions, created by ionization of slow moving atoms and molecules well inside the heliosphere, provide us with a new tool to probe remote regions in and beyond the heliosphere and to study injection and acceleration processes in the solar wind. Comprehensive and continuous measurements of H, He, C, N, O, Ne and other pickup ions, especially with the Solar Wind Ion Composition Spectrometer (SWICS) on both Ulysses and ACE, have given us a wealth of data that have been used to infer chemical and physical properties of the local interstellar cloud. With SWICS on Ulysses we discovered a new population of pickup ions, produced from atomic and molecular sources deep inside the heliosphere. The velocity distributions and composition of these “inner source” pickup ions are distinctly different from those of interstellar pickup ions, showing effects of strong adiabatic cooling, and a composition resembling that of the solar wind. Strong cooling indicates that the source of these pickup ions lies close to the Sun. The similarity of composition of inner source heavy ions to that of the solar wind implies that the dominant production mechanism for these pickup ions involves the absorption and re-emission of solar wind from interplanetary dust grains. While interstellar pickup ions are the seed population of the main Anomalous Cosmic Rays (ACRs), inner source pickup ions may be an important source of the rarer ACRs such as C, Mg, Si, S, and Fe. We present new results and review previous work with an emphasis on characteristics of the local interstellar cloud and properties of the inner source. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
A space mission to Jupiter and Saturn, and beyond, provides an opportunity to explore the low energy galactic cosmic rays, which are largely excluded from the inner solar system by the outward sweep of the magnetic fields in the solar wind. The low energy cosmic rays are believed to be responsible for much of the heating of the gaseous disk of the galaxy, so a measurement of their intensity will have far reaching effects on theories of the interstellar gas and the evolution of the galaxy. The nuclear abundances, and in particular the presence or absence of high Z nuclei, will give critical information on the proximity of cosmic ray sources.This is one of the publications by the Science Advisory Group.  相似文献   

16.
The differences between the composition of Galactic cosmic rays and that of the interstellar medium are manifold, and they contain a wealth of information about the varying processes that created them. These differences reveal much about the initial mixing of freshly synthesized matter, the chemistry and differentiation of the interstellar medium, and the mechanisms and environment of ion injection and acceleration. Here we briefly explore these processes and show how they combine to create the peculiar, but potentially universal, composition of the cosmic rays and how measurements of the composition can provide a unique measure of the mixing ratio of the fresh supernova ejecta and the old interstellar medium in this initial phase of interstellar mixing. In particular, we show that the major abundance differences between the cosmic rays and the average interstellar medium can all result from cosmic ray ion injection by sputtering and scattering from fast refractory oxide grains in a mix of fresh supernova ejecta and old interstellar material. Since the bulk of the Galactic supernovae occur in the cores of superbubbles, the bulk of the cosmic rays are accelerated there out of such a mix. We show that the major abundance differences all imply a mixing ratio of the total masses of fresh supernova ejecta and old interstellar material in such cores is roughly 1 to 4. That means that the metallicity of ∼3 times solar, since the ejecta has a metallicity of ∼8 times that of the present interstellar medium.  相似文献   

17.
In this article we have discussed reasons both of solar and of interstellar origin giving rise to a pronounced three-dimensional structure of the expanding solar wind and thus of the global configuration of the heliosphere. Our present observational knowledge on these structurings is reviewed, and all attempts to theoretically model these solar wind structures are critically analysed with respect to their virtues and flaws. It is especially studied here by what mechanisms interstellar imprints on the actual type of solar wind expansion can be envisaged. With concern to this aspect it hereby appears to be of eminent importance that the solar system maintains a relative motion with a submagnetosonic velocity of about 23km/sec with respect to the ambient magnetized interstellar medium corresponding to a magnetosonic Mach number of about 0.5.A heliopause closing the distant heliospheric cavity within a solar distance of about 100AU on the upwind side and opening it into an largely extended tail on the downwind side results as a first consequence from this relative motion. As a second consequence an asymmetric heliospheric shockfront with upwind distances smaller than downwind distances by ratios between 1/3 and 2/3 is most likely provoked which gives rise to at least two important upwind-downwind asymmetric processes influencing the supersonic solar wind expansion downstream from the shock: the anomalous cosmic ray diffusion into the solar wind, and high energetic jet electrons originating at the shock and moving inwards up to an inner critical point at around 20AU. As we shall demonstrate both processes are influencing the solar wind expansion beyond 20AU, however, more efficiently in the upwind hemisphere as compared to the downwind hemisphere. In the region inside 20AU other mechanisms are operating to propagate the interstellar imprint on the solar wind expansion further downstream into the inner heliosphere because here even the original solar wind electrons, in view of the solar wind bulk velocities, behave as a subsonic plasma constituent which can modify the solar wind solutions by means of an appropriate detuning of the circumsolar electric polarisation field. We give quantitative estimates for these effects.What concerns the theory of a solar wind expansion into a counterflowing ambient interstellar medium, some flaws of the present theoretical attempts are identified impeding that the interstellar influence on the actual solar wind solutions can become visible. We thus conclude that there is a clear need for three-dimensional and time-dependent solar wind models with a free outflow geometry taking into account the multisonicity of the solar wind plasma with different eigenmodes for a perturbation propagation.  相似文献   

18.
We review recent advances in determining the elemental, charge-state, and isotopic composition of 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations.The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however, are found to be roughly energy independent in the 1 to 20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion.Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He+ along with heavy ions with typically coronal ionization states. High-resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP 22Ne/20Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of 3He-rich, heavy-ion rich and carbon-poor SEP events, along with direct measurements of the ionization states of SEPs provide essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.It is concluded that SEP acceleration is a two-step process, beginning with plasma-wave heating of the ambient plasma in the lower corona, which may include pockets of cold material, and followed by acceleration to the observed energies by either flare-generated coronal shocks or Fermi-type processes in the corona. Interplanetary propagation as well as acceleration by interplanetary propagating shock will often further modify the composition of SEP events, especially at lower energies.  相似文献   

19.
Cosmic-ray acceleration and transport is considered from the point of view of application to diffuse galactic -ray sources. As an introduction we review several source models, in particular supernovae exploding inside or near large interstellar clouds. The complex problem of cosmic ray transport in random electromagnetic fields is reduced to three cases which should be sufficient for practical purposes. As far as diffusive acceleration is concerned, apart from reviewing the basic physical principles, we point out the relation between shock acceleration and 2nd order Fermi acceleration, and the relative importance of the two processes around interstellar shock waves. For -ray source models the interaction of cosmic rays with dense clouds assumes great importance. Past discussions had been confined to static interactions of clouds with the ambient medium in the sense that no large scale mass motions in the ambient interstellar medium were considered. The well-known result then is that down to some tens of MeV or less, cosmic-ray nucleons should freely penetrate molecular clouds of typical masses and sizes. The self-exclusion of very low energy nucleons however may affect electron transport with consequences for the Bremsstrahlung -luminosity of such clouds.In this paper we consider also the dynamical interaction of dense clouds with a surrounding hot interstellar medium. Through cloud evaporation and accretion there exist mass flows in the cloud surroundings. We argue that in the case of (small) cloud evaporation the galactic cosmic rays will be essentially excluded from the clouds. The dynamic effects of cosmic rays on the flow should be minor in this case. For the opposite case of gas accretion onto (large) clouds, cosmic-ray effects on the flow will in general be large, limiting the cosmic-ray compression inside the cloud to dynamic pressure equilibrium. This should have a number of interesting and new consequences for -ray astronomy. A first, qualitative discussion is given in the last section.Proceedings of the XVIII General Assembly of the IAU: Galactic Astrophysics and Gamma-Ray Astronomy, held at Patras, Greece, 19 August 1982.  相似文献   

20.
We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes—ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination—is reviewed. Emphasis is placed on those key reactions that have been identified, by sensitivity analyses, as ‘crucial’ in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalyzed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号