首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ambiguity characteristics of multiple access frequency hop codes based on standard quadratic congruences are investigated in the light of results obtained for codes based on Costas arrays and extended quadratic congruences. While the autoambiguity properties are found to be very similar to those of Costa codes, i.e. nearly ideal, the cross-ambiguity properties of quadratic congruential codes are much better. These results are valid across the whole class of code sets considered, but they are obtained at some expense in the pulse compression characteristics of the codes. A uniform upper bound is placed on the entire cross-ambiguity function surface, and bounds are placed on the amplitude of spurious peaks in the autoambiguity function. These bounds depend on the time-bandwidth product and code length exclusively and lead naturally to a discussion of the design tradeoffs for these two parameters. Examples of typical autoambiguity and cross-ambiguity functions are given to illustrate the performance of quadratic congruential coding with respect to Costas coding  相似文献   

2.
We discuss cross-ambiguity properties of a specific family of Costas arrays called Welch-Costas (W-C) arrays. These properties are of interest in multiuser radar and sonar system, especially since Costas arrays are known to possess ideal auto-ambiguity functions. The theory of W-C arrays is reviewed. It is then proved that only pairs of W-C arrays can have at most two hits in their cross-ambiguity function (best possible case). The maximum number of hits in the cross-ambiguity functions of a family of W-C arrays is shown to be a function of the number of W-C arrays in the family. The upper bound on the number of hits in the cross ambiguity functions for a family of W-C arrays is also derived. Specific examples of how reducing the number of W-C arrays improves the cross-ambiguity properties are given for various types of prime numbers  相似文献   

3.
The need for families of frequency-hop codes which have mutually small auto-ambiguity and cross-ambiguity functions is discussed. Current coding methods are reviewed. A new family of frequency-hop codes based upon the number-theoretic concept of cubic congruences is introduced. It is shown that for about 50% of the prime numbers, families of full codes exist which have at most two coincidences for any time-frequency shift in their auto-ambiguity functions and at most three coincidences in the set of mutual cross-ambiguity functions  相似文献   

4.
The time-frequency hop codes based upon extended quadratic congruences (TFHC-EQC) were developed previously (1988, 1991). The known results about the ambiguity functions of the TFHC-EQC are extended from aperiodic cases to periodic cases. Precisely, the following new results are proved: (1) The tight upper bound for the periodic auto-ambiguity function of the TFHC-EQC is 6; (2) the periodic cross-ambiguity upper bound of the TFHC-EQC is at least (N-1)/2; (3) there exists a subset TFHC-EQC of volume (N-1)/2 such that its periodic cross-ambiguity is tightly upper bounded by 8  相似文献   

5.
In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobes for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.  相似文献   

6.
A radar waveform design technique which utilizes Lagrange's method of multipliers to control temporal sidelobes and to reduce Doppler sidelobes is described. This classical method of constrained optimization is applied to the problem of synthesizing a radar wave-form where mismatch loss is the objective function to be minimized. The associated constraints are taken from expressions for the composite temporal sidelobes of the cross-correlation response and the peak correlation response where sets of code words are used to modulate a series of radar pulses. The resulting code sets and receiver reference sets are called group-complementary and produce a trench parallel to or on the range axis of the cross-ambiguity surface.  相似文献   

7.
A pulse compression matched filter is analyzed so that the response may be computed when the pulse width, FM rate, and center frequency simultaneously differ from design conditions. Unilateral and bilateral time domain amplitude weighting for sidelobe reduction is included. A general cross-ambiguity function is defined to include these effects and some basic computed results are presented for the peak envelope response with various degrees of Hamming weighting. Computer evaluation of this cross-ambiguity function allows one to choose a combination of mismatches for signal design trade-off between resolution and detection performance. Since no restrictions are placed upon the mismatch parameters, this analysis may also be used to evaluate the filter discrimination against various interfering signals.  相似文献   

8.
A technique is introduced to select poly-phase codes and optimal filters of a pulse compression system that have specific temporal and frequency characteristics. In the particular problem under study, multiple vehicles are assigned unique codes and receiver filters that have nearly orthogonal signatures. Narrowband users, that act as interference, are also present within the system. A code selection algorithm is used to select codes which have low autocorrelation sidelobes and low cross correlation peaks. Optimal mismatched filters are designed for these codes which minimize the peak values in the autocorrelation and the cross correlation functions. An adjustment to the filter design technique produces filters with nulls in their frequency response, in addition to having low correlation peaks. The method produces good codes and filters for a four-user system with length 34 four-phase codes. There is considerable improvement in cross and autocorrelation sidelobe levels over the matched filter case with only a slight decrease in the signal-to-noise ratio (SNR) of the system. The mismatched filter design also allows the design of frequency nulls at any frequency with arbitrary null attenuation, null width, and sidelobe level, at the cost of a slight decrease in processing gain  相似文献   

9.
Time-frequency hop codes are developed based upon the theory of linear congruences. These codes can be used for multiuser radar and asynchronous spread spectrum communications systems. A uniform upper bound is placed on the cross-correlation function between any two elements of the code set. The upper bound is minimized by choice of time-bandwidth product and is shown to diminish as 2/N, where N is the number of elements in the code set. The size and position of spurious peaks in the autocorrelation functions are discussed. The results are extended to narrowband ambiguity functions.  相似文献   

10.
High resolution radars require signals with large time-bandwidth product such as CW signal and coherent pulse train (CPT). We discuss a phase-coded interrupted CW (ICW) signal which is the combination of CW signal and CPT. Phase codes used here are with perfect periodic autocorrelation. The periodic ambiguity function of ICW signals is studied including single-carrier signal and multi-carrier signal. It is interesting that the gate function has different effects on two signals and contributes to a multi-carrier ICW signal which yields nearly perfect autocorrelation. Meanwhile we also suggest an efficient receiver approach to ICW signals, which can reduce the computational burden of the processor and utilize the good properties of P3 and P4 codes.  相似文献   

11.
Multiple Access Frequency Hopping Patterns with Low Ambiguity   总被引:1,自引:0,他引:1  
A technique is discussed for the design of multiple access frequency hopping patterns which will allow a number of users to communicate reliably over a limited bandwidth in the presence of Doppler and timing asynchronies. The patterns are based on a subset of the Reed-Solomon codewords. They possess nearly flat ambiguity and cross-ambiguity functions and thus could be useful as discrete radar signals. In addition the structure of the patterns permits a straightforward Implementation.  相似文献   

12.
A novel efficient technique based on a single slice Radon-ambiguity transform (RAT) for time-delay and time-scale estimation is proposed. The proposed approach combines the narrowband cross-ambiguity function (NBCAF), the wideband cross-ambiguity function (WBCAF), and a single slice RAT to estimate multiple target parameters in noisy environments. The square modulus of Gaussian-enveloped linear frequency modulated (GLFM) signals has high-energy centrality in the ambiguity plane. Its peaks in the NBCAF fall along nearly straight lines whose slopes depend on the Doppler rates of the moving targets. These lines could be effectively detected by computing the entire Radon transform of the NBCAF for all possible angles; however, it is a computationally intensive procedure. It is shown that without calculating the entire RAT, it is possible to estimate target parameters using only a single slice of the RAT, i.e., using an appropriate projection of the NBCAF. It is demonstrated that the proposed method can successfully separate overlapping targets efficiently. The efficiency is achieved due to fast Fourier transform (FFT)-bascd processing, use of a single slice of RAT, and the use of only one-dimensional (1-D) searches.  相似文献   

13.
The matched filter ambiguity function is presented for a burst waveform composed of repeated subbursts, each one of which consists of N pulses in which the phase is varied quadratically from pulse to pulse. The resulting ambiguity function exhibits small residual ambiguities along the delay axis separated by the reciprocal of the pulse repetition frequency (PRF). A cross-ambiguity function is derived which reduces these ambiguities to zero amplitude. A third cross-ambiguity function is presented for a receiver matched to a generalized Hamming weighted repeated quadratic burst. The location in the delay/Doppler plane of the waveform ambiguities for these waveforms is compared with that of an uncoded pulse burst.  相似文献   

14.
介绍了基于Chase算法[1,3]的Turbo乘积码软入软出(SISO)迭代译码算法。对Turbo乘积码在加性高斯白噪声(AWGN)信道下的性能进行了仿真和分析,结果表明:Turbo乘积码译码复杂度较低,在编码效率较高时,仍具很好的译码性能。  相似文献   

15.
A new class of symmetric radar pulse compression polyphase codes is introduced which is compatible with digital signal processing. These codes share many of the useful properties of the Frank polyphase code. In contrast with the Frank code, the new codes are not subject to mainlobe to sidelobe ratio degradation caused by bandlimiting prior to sampling and digital pulse compression. It is shown that bandlimiting the new codes prior to pulse compression acts as a waveform amplitude weighting which has the effect of increasing the mainlobe to sidelobe ratios.  相似文献   

16.
17.
发展了一种跨音速多升力面的气动设计方法和设计程序,它基于已成功应用于亚、跨音速机翼设计和亚音速双翼面设计的"余量修正迭代"概念.当升力面上出现超音速区和激波时自动引用迎风格式对控制方程进行修正.开发了一系列接口程序,包括目标压力设计程序.由此气动设计程羊、TAU程序以及相应的接口程序建立了跨音速多升力面气动反设计软件系统.用两个鸭翼-机翼构型验证了设计方法和设计程序,结果表明在高跨音速下设计迭代有很好的收敛性.  相似文献   

18.
一种差分跳频频率转移函数算法   总被引:1,自引:0,他引:1  
 为提高差分跳频频率转移路径的随机性和均匀性,在深入研究差分跳频技术和频率转移函数的基础上,引入一种优化的混沌序列对数据信息码进行扰乱,利用纠错能力较强的RS(Reed-Solomon)码和m序列实现对跳频间隔及频率子集的选择控制,构建了一种新的差分跳频频率转移函数算法。对算法的随机性和均匀性进行了仿真验证。仿真结果表明,相比于基于混沌序列的G函数算法和基于RS码和m序列的G函数算法,本文算法产生的跳频序列的随机性和均匀性均得到了良好改善。  相似文献   

19.
Design Principles of MIMO Radar Detectors   总被引:4,自引:0,他引:4  
This paper considers the problem of multiple-input multiple-output (MIMO) radars employing space-time coding (STC) to achieve diversity. To this end, after briefly outlining the model of the received echo, a suitable detection structure is derived, and its performance is expressed in closed form as a function of the clutter statistical properties and of the space-time code matrix. Interestingly, this receiver requires prior knowledge of the clutter covariance, but the detection threshold is functionally independent thereof. At the transmitter design stage, we give two criteria for code construction: the first is based on the classical Chernoff bound, the second is an information-theoretic criterion. Interestingly, the two criteria lead to the same condition for code optimality, which in turn specializes, under the assumption of uncorrelated clutter and square code matrix, in some well-known full-rate space-time codes. A thorough performance assessment is also given, so as to establish the optimum achievable performance for MIMO radar systems.  相似文献   

20.
Since Barker-like sequences could not be found for sequence lengths greater than 13, radar system designers have been searching for biphase sequences with discrimination (ratio of the magnitude of the mainlobe to the magnitude of the peak sidelobe of the autocorrelation function of the sequence) greater than 13. We present new results on biphase Legendre sequences for all prime lengths. The results of the paper are as follows. 1) Two lemmas on the symmetric properties of the Legendre sequences are stated and using these lemmas and simple rules of modulo arithmetic, a method is suggested for generating long sequences which does not require multiplications and divisions. 2) From the properties of autocorrelation function of the cyclically shifted Legendre sequence (LS) for prime lengths, a computationally efficient method is evolved for carrying out systematic search for sequences with discrimination greater than 13. The proposed method reduces the computational load by a factor of approximately 16. Using these techniques, we generated codes up to length 1019. In each case we searched for the code which gives the maximum discrimination for that length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号