首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The PET instrument aboard the SAMPEX satellite has provided us with long-term intra-calibrated observations of geomagnetically trapped protons and deuterons in the inner zone, suitable for use in constraining the low-altitude portions of radiation belt models being developed as successors to AP-8. These observations have been summarized elsewhere (Looper et al., 1996). Here we report a detection of geomagnetically-trapped tritium at energies from 14 to 35 MeV/nuc below L = 1.2, at about 1/8 the flux of deuterium previously reported at that location and at similar energy per nucleon. We also demonstrate the utility of the SAMPEX/PET observations for measuring the east-west anisotropy in the trapped particle flux at low altitudes, which is due to displacement of particle gyrocenters from the position of observation in a region of strong flux gradients. This anisotropy is implicitly ignored in omnidirectional radiation-flux models, but it can be important to mission planners considering how to distribute shielding over the surface of oriented spacecraft in low Earth orbit.  相似文献   

2.
The results of measurements of absolute flux values and long term temporal evolution of the spatial distribution of trapped He ions in the energy range 1.2 – 9.2 MeV/nucleon below L = 4 are reported. The observations were made with ion counter on board the Japanese OHZORA satellite during the period of January 1984 through March 1987.  相似文献   

3.
We have analyzed the trapped electron data (0.19–3.2 MeV) taken by the Japanese OHZORA satellite operated at 350–850 km altitude in polar orbit during 1984–1987 near solar minimum. The electron observations reveal all the global attributes of the quiet-time electron radiation belts, such as the South Atlantic Anomaly, the electron “slot”, and the outer radiation belt regions. The electron data are in general agreement with the NASA AE-8 electron model, but there are differences, particularly with respect to distinctive local-time variations in the slot region. In this paper, we present results from analyses of variations of the electron pitch angle distributions with local time, L-shell and altitude.  相似文献   

4.
We report a study of the numeric solution to the diffusive transport equation for energetic protons magnetically trapped in the Earth's equatorial magnetosphere. The analysis takes into account the pertinent physical processes in this region, including deceleration of protons by Coulomb collisional interactions with free and bound electrons, the charge exchange process, cosmic ray albedo neutron decay source, and electric and magnetic radial diffusion. These results were obtained using the Finite Element Method with magnetic moment and geomagnetic L-shell as free variables. Steady state boundary conditions were imposed at L=1 as zero distribution function and at L=7 with proton distribution function extracted from ATS 6 satellite observations. The FEM-code yields unidirectional proton flux in the energy range of 0.1–1000 MeV at the equatorial top of the geomagnetic lines, and the results are found to be in satisfactorily agreement with the empirical NASA AP-8 model proton flux within the energy range of 0.5–100 MeV. Below 500 keV, the empirical AP-8 model proton fluxes are several orders of magnitude greater than those computed with the FEM-code at L<3. This discrepancy is difficult to explain by uncertainties of boundary spectrum parameters or transport coefficients.  相似文献   

5.
Dosimeter data taken on the APEX (1994–1996), CRRES (1990–1991) and DMSP (1984–1987) satellites have been used to study the low altitude (down to 350 km) radiation environment. Of special concern has been the inner edge of the inner radiation belt due to its steep gradient. We have constructed dose models of the inner edge of the belt from all three spacecraft and put them into a personal computer utility, called APEXRAD, that calculates dose for user-selected orbits. The variation of dose for low altitude, circular orbits is given as a function of altitude, inclination and particle type. Dose-depth curves show that shielding greater than 1/4 in Al is largely ineffectual for low altitude orbits. The contribution of outer zone electrons to low altitude dose is shown to be important only for thin shields and to have significant variation with magnetic activity and solar cycle.  相似文献   

6.
New experimental data obtained on the orbital station ‘MIR’ in 1991 during solar maximum are discussed. Electron fluxes with Ee>75 keV were registered for three different directions as well as for electrons with Ee>300 and 600 keV. Spatial and time distributions of electron fluxes in the trapping region are presented. In the inner radiation belt an additional maximum is observed at L=1.25–1.35, and the fluxes in the 22-05h MLT interval are 2–3 orders of magnitude smaller, than during other local times. In this region a flattening of the electron spectrum is observed. The results obtained were compared with the AE-8 model.  相似文献   

7.
Radial transport theory for inner radiation zone MeV He ions has been extended by combining radial diffusive transport, losses due to Coulomb friction and charge exchange reaction with local generation of 3He and 4He ions due to nuclear reactions taking place on the inner edge of the inner radiation zone. From interactions between high energy trapped protons and upper atmospheric constituents we have included a nuclear reaction yield helium flux source that was numerically derived from a nuclear reaction model originally developed at the Institute of Nuclear Researches of Moscow, Russia and implemented in the computer system at the University of Campinas, Brazil. Magnetospheric transport computations have been made covering the L-shell range L=1.0 to 1.6 and the resulting MeV He ion flux distributions show a strong influence of the local nuclear source mechanism on the inner zone energetic He ion content.  相似文献   

8.
In this study we explore physical scaling laws applied to solar nanoflares, microflares, and large flares, as well as to stellar giant flares. Solar flare phenomena exhibit a fractal volume scaling, V(L)  L1.9, with L being the flare loop length scale, which explains the observed correlation between the total emission measure EMp and flare peak temperature Tp in both solar and stellar flares. However, the detected stellar flares have higher emission measures EMp than solar flares at the same flare peak temperature Tp, which can be explained by a higher electron density that is caused by shorter heating scale height ratios sH/L ≈ 0.04–0.1. Using these scaling laws we calculate the total radiated flare energies EX and thermal flare energies ET and find that the total counts C are a good proxy for both parameters. Comparing the energies of solar and stellar flares we find that even the smallest observed stellar flares exceed the largest solar flares, and thus their observed frequency distributions are hypothetically affected by an upper cutoff caused by the maximum active region size limit. The powerlaw slopes fitted near the upper cutoff can then not reliably be extrapolated to the microflare regime to evaluate their contribution to coronal heating.  相似文献   

9.
利用NOAA-15卫星1998年到2011年近13年的高能质子全向通量观测资料, 分析了一个太阳活动周内, 低高度内辐射带高能质子通量的分布变化特性及其物理原因, 比较了观测结果与AP8模型的不同. 研究表明, 低高度内辐射带高能质子通量与太阳活动水平的反相关关系与磁壳参数L值及磁场B值有关; L值越低, B值越大的空间点, 其高能质子通量与太阳活动水平的反向相关性越明显. 高能质子通量随太阳活动水平的变化存在明显滞后现象, L值越高、 B值越小的空间点, 滞后现象就越明显, 滞后严重时可以达到一年左右的时间; 这种滞后现象反映出低高度内辐射带高能质子的源与损失达到平衡是一个中长期过程. 通过与AP8模型计算结果的比较分析可以看出, 利用AP8模型时, 仅考虑地磁场长期变化对质子通量的影响可能会夸大低高度内辐射带局部高能质子通量的增强.   相似文献   

10.
This work studies the sudden increases in total electron content of the ionosphere caused by the very intense solar flare on July 14, 2000. Total electron content (TEC) data observed from a Global Positioning System (GPS) network are used to calculate the flare-induced TEC increment, δTECf, and variation rate, dTECf/dt. It is found that both dTECf/dt and δTECf are closely related with the solar zenith angles. To explain the observation results, we derived a simple relationship between the partial derivative of the flare-induced TEC, ∂TECf/∂t, which is a good approximation for dTECf/dt, and the solar zenith angle χ, as well as the effective flare radiation flux If, according to the well-known Chapman theory of ionization. The derived formula predicted that ∂TECf/∂t is proportional to If and inverse proportional to Chapman function ch(χ). This theoretical prediction not only explains the correlation of dTECf/dt and δTECf with χ as shown in our TEC observation, but also gives a way to deduce If from TEC observation of GPS network. Thus, the present work shows that GPS observation is a powerful tool in the observation and investigation of solar flare effects on the ionosphere, i.e., the sudden ionospheric disturbances, which is a significant phenomenon of space weather.  相似文献   

11.
12.
Two phenomena connected with the maximum phase of the 11-year solar cycle in the galactic cosmic ray intensity – the change in the energy dependence of the intensity variations and the double-peak structure in the intensity modulation time profile – are considered for the last five solar cycles (Nos. 19–23). The distinct 22-year cycle in the magnitude of the so called energy hysteresis is observed.The periods of the solar cycle maximum phase in the galactic cosmic ray intensity, characterized by the specific energy dependence of the intensity, are estimated. It is found that the double-peak structures belonging to the solar cycle maximum phase and those around it are very similar both in the amplitude and in its energy dependence.  相似文献   

13.
Active longitudes play an important role in spatial organization of solar activity. These zones associated with complexes of solar activity may persist for 20–40 consecutive rotations, and may be caused by large-scale non-axisymmetrical components of the global magnetic field. These zones of the field concentrations are 20°–40° wide and during subsequent rotations tend to reappear at constant longitude or drift slightly eastward or westward. Since the magnetic field is the principle source of the variations of radiation on the solar surface the active longitudes affect the solar irradiance received at the Earth. In this paper I study connections between the active longitudes and irradiance variations using VIRGO/SOHO, KPO and WSO data, which covered the transition period from solar cycle 22 to cycle 23 and rising phase of cycle 23. The result of this investigation is that active longitudes are associated with increases of the total solar irradiance and are prime sources of enhanced EUV radiation and coronal heating.  相似文献   

14.
The occurrence frequencies or fluxes of most of the solar phenomena show a 11-year cycle like that of sunspots. However, the average characteristics of these phenomena may not show a 11-year cycle. Among the terrestrial parameters, some related directly to the occurrence frequencies of solar phenomena (for example, ionospheric number densities related to solar EUV fluxes which show 11-year cycle like sunspots) show 11-year cycles, including the double-peak structures near sunspot maxima. Other terrestrial parameters related to average characteristics may not show 11-year sunspot cycles. For example, long-term geomagnetic activity (Ap or Dst indices) is related to the average interplanetary solar wind speed V and the total magnetic field B. The average values of V depend not on the occurrence frequency of ICMEs and/or CIRs as such, but on the relative proportion of slow and high-speed events in them. Hence, V values (and Ap values) in any year could be low, normal or high irrespective of the phase of the 11-year cycle, except that during sunspot minimum, V (and Ap) values are also low. However, 2–3 years after the solar minimum (well before sunspot maximum), V values increase, oscillate near a high level for several years, and may even increase further during the declining phase of sunspot activity, due to increased influence of high-speed CIRs (corotating interplanetary regions). Thus, Ap would have no fixed relationship with sunspot activity. If some terrestrial parameter shows a 11-year cycle, chances are that the solar connection is through the occurrence frequencies (and not average characteristics) of some solar parameter.  相似文献   

15.
Plasma and magnetic field parameter variations through fast forward interplanetary shocks were correlated with the peak geomagnetic activity index Dst in a period from 0 to 3 days after the shock, during solar maximum (2000) and solar minimum (1995–1996). Solar wind speed (V) and total magnetic field (Bt) were the parameters with higher correlations with peak Dst index. The correlation coefficients were higher during solar minimum (r2 = 56% for V and 39% for Bt) than during solar maximum (r2 = 15% for V and 12% for Bt). A statistical distribution of geomagnetic activity levels following interplanetary shocks was obtained. It was observed that during solar maximum, 36% and 28% of interplanetary shocks were followed by intense (Dst  −100 nT) and moderate (−50  Dst < −100 nT) geomagnetic activity, whereas during solar minimum 13% and 33% of the shocks were followed by intense and moderate geomagnetic activity. It can be concluded that the upstream/downstream variations of V and Bt through the shocks were the parameters better correlated with geomagnetic activity level, and during solar maximum a higher relative number of interplanetary shocks can be followed by intense geomagnetic activity than during solar minimum. One can extrapolate, for forecasting goals, that during a whole solar cycle a shock has a probability of around 50% to be followed by intense/moderate geomagnetic activity.  相似文献   

16.
There are a host of factors influencing the excitation of Pc1 geomagnetic pulsations, which are ULF waves in the frequency range between 0.2 and 5 Hz. We have studied carefully the dependence of the pearl-type Pc1 activity at Sodankylä, Finland (L = 5.1) on the plasma density N in front of the magnetosphere, the bulk velocity V of the solar wind, and the intensity B of the IMF. The result is as follows: high values of N and reduced values of V are favorable to appearance of Pc1, whereas the dependence of Pc1 activity on B is practically absent. We also show that the probability of Pc1 occurrence decreases with the interplanetary electric field, and increases with solar wind impact pressure and with the plasma to magnetic pressure ratio “beta”.  相似文献   

17.
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   

18.
Calculated intensities of the Fe X-ray lines due to transitions 2p6 − 2p53d lines (near 15 Å) and 2p6 − 2p53s lines (near 17 Å) are compared with measured line intensities in solar and tokamak spectra. For the solar spectra, temperature Te is obtained from the ratio of the Fe 16.776 Å line to a nearby Fe line. We find excellent agreement for all the major Fe line features in the 15–17 Å region except the Fe 15.015 Å line, the observed flux of which is less than the theoretical by a factor f. We find that f strongly depends on the heliocentric angle θ of the emitting region, being smallest (0.2) when the region is nearest Sun centre, but nearly 1 near the limb. Attributing this to resonance scattering, we are able to deduce the path length and electron density from the observations. Possible application to stellar active regions is given.  相似文献   

19.
The variation in the solar constant, S(t), is reproduced by the SOLAR2000 Research Grade v1.05 empirical solar irradiance model and is described for 5 solar cycles between cycles 18 and 23 (February 14, 1947 through May 31, 2000). This solar constant variation is dependent upon the derivation data sets and the formulation of SOLAR2000 which are described in more detail. The S(t) temporal variability in SOLAR2000 is shown for the solar spectrum between 1–122 nm. The variability is consistent with previous discussions in the literature and a new result is shown where the 1–122 nm wavelength range accounts for about 5–14% of the standard deviation reported in the ASTM E-490 standard. The minimum-maximum range of S(t) variation due to 1–122 nm variability is between 1367.2768 Wm−2 on 1986-152 and 1367.2877 Wm−2 on 1957-340. The mean S(t) in these data is 1367.2796 Wm−2.  相似文献   

20.
We present a simple yet numerically robust technique, using autoregressive linear filters, to remove unwanted “colored noise” from solar wind and radiation belt electron data at sub-daily resolution. The remaining signal is then studied using finite impulse response linear prediction filters to represent the driven portion of the linear dynamics that describe the coupling between solar wind speed and electron flux. Sub-daily resolution response profiles covering magnetic L-shells between 1.1 and 8.0 RE are presented which are consistent with daily resolution response functions. Namely, while there is strong global coherence governing electron flux dynamics, there are at least two distinct responses. The first response is an immediate dropout of electrons between L = 4 and L = 7 that is at least a partly adiabatic effect associated with enhancements in the ring current. This is followed by a 1–2 day delayed enhancement across the same L-shells that is likely a result of increased radial diffusion. The second response is an immediate enhancement seen between L = 3 and L = 4 with a typical duration of less than one day. Plausible explanations for this second response are briefly discussed, but neither empirical nor theoretical evidence can establish conclusively a definite physical cause. Finally, the response profiles show significant solar cycle and seasonal dependencies, indicating that better model output might be achieved with: (1) additional simultaneous solar wind inputs; (2) more sophisticated dynamical model structures capable of incorporating non-linear feedback; and/or (3) time-adaptive linear filters that can track non-stationary dynamics in time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号