首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA fragmentation in mammalian cells exposed to various light ions.   总被引:1,自引:0,他引:1  
Elucidation of how effects of densely ionizing radiation at cellular level are linked to DNA damage is fundamental for a better understanding of the mechanisms leading to genomic damage (especially chromosome aberrations) and developing biophysical models to predict space radiation effects. We have investigated the DNA fragmentation patterns induced in Chinese hamster V79 cells by 31 keV/micrometer protons, 123 keV/micrometer helium-4 ions and gamma rays in the size range 0.023-5.7 Mbp, using calibrated Pulsed Field Gel Electrophoresis (PFGE). The frequency distributions of fragments induced by the charged particles were shifted towards smaller sizes with respect to that induced by comparable doses of gamma rays. The DSB yields, evaluated from the fragments induced in the size range studied, were higher for protons and helium ions than for gamma rays by a factor of about 1.9 and 1.2, respectively. However, these ratios do not adequately reflect the RBE observed on the same cells for inactivation and mutation induced by these beams. This is a further indication for the lack of correlation between the effects exerted at cellular level and the initial yield of DSB. The dependence on radiation quality of the fragmentation pattern suggests that it may have a role in damage repairability. We have analyzed these patterns with a "random breakage" model generalized in order to consider the initial non-random distribution of the DNA molecules. Our results suggest that a random breakage mechanism can describe with a reasonable approximation the DNA fragmentation induced by gamma rays, while the approximation is not so good for light ions, likely due to the interplay between ion tracks and chromatin organization at the loop level.  相似文献   

2.
This paper reports on DNA DSB induction in human fibroblasts by iron ions of different energies, namely 5, 1 GeV/u, 414 and 115 MeV/u, in absence or presence of different shields (PMMA, Al and Pb). Measure of DNA DSB was performed by calibrated Pulsed Field Gel Electrophoresis using the fragment counting method. The RBE-LET relationships for unshielded and shielded beams were obtained both in terms of dose average LET and of track average LET. Weak dependence on these parameters was observed for DSB induction. The shielding efficiency, evaluated by the ratio between the cross sections for unshielded and shielded beams, depends not only on the shield type and thickness, but also on the beam energy. Protection is only observed at high iron ions energy, especially at 5 GeV/u, where PMMA shield gives higher protection compared to Al or Pb shields of the same thickness expressed in g/cm2.  相似文献   

3.
Vegetative cells of E. coli differing in their radiosensitivity have been used in heavy ion irradiation experiment. Besides inactivation measurements also the induction of DNA double strand breaks (DSB) have been measured using the method of pulse-field gel electrophoresis. This method allows to separate linear DNA with length up to 8 Mio base pairs. After irradiation with heavy ions we find a higher amount of low molecular weight fragments when compared to sparsely ionizing radiation. This agrees with the idea that heavy ions as a structured radiation have a high probability to induce more than one strand break in a DNA molecule if the particle hits the DNA. The amount of intact DNA remaining in the agarose plugs decreases exponentially for increasing radiation doses or particle fluences. From these curves cross sections for the induction of DSB after heavy ion irradiation have been determined. These results will be discussed in comparison to the results for cell survival.  相似文献   

4.
Relative abundances of sub-iron (Sc-Cr) to iron nuclei in low energy (50–100 MeV/N) galactic cosmic rays have been determined from an analysis of about 100 events of heavy ions (Z = 10−28) recorded in a detector assembly flown in the Anuradha cosmic ray experiment in the Spacelab-3 on a six day mission in April–May 1985. The measured abundance ratio of (Sc-Cr)/Fe nuclei in 50–100 MeV/N energy range is 1.1 ± 0.3, and the present result of enhanced ratio of sub-iron to iron nuclei is in agreement with other experimental results in 200–800 MeV/N range. The over-abundance of iron secondaries at these low energies cannot be explained in the conventional models for propagation of cosmic rays. Available experimental data indicate a very different time history for the low energy iron-group, as compared to those of lighter nuclei in galactic cosmic rays.  相似文献   

5.
DNA fragmentation by charged particle tracks.   总被引:1,自引:0,他引:1  
High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons (60Co) or 125 keV/micrometers nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome.  相似文献   

6.
Chromosomal aberrations induced by high-energy iron ions with shielding.   总被引:1,自引:0,他引:1  
Biophysical models are commonly used to evaluate the effectiveness of shielding in reducing the biological damage caused by cosmic radiation in space flights. To improve and validate these codes biophysical experiments are needed. We have measured the induction of chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to 500 MeV/n iron ion beams (dose range 0.1-1 Gy) after traversing shields of different material (lucite, aluminium, or lead) and thickness (0-11.3 g/cm2). For comparison, cells were exposed to 200 MeV/n iron ions and to X-rays. Chromosomes were prematurely condensed by a phosphatase inhibitor (calyculin A) to avoid cell-cycle selection produced by the exposure to high-LET heavy-ion beams. Aberrations were scored in chromosomes 1, 2, and 4 following fluorescence in situ hybridization. The fraction of aberrant lymphocytes has been evaluated as a function of the dose at the sample position, and of the fluence of primary 56Fe ions hitting the shield. The influence of shield thickness on the action cross-section for the induction of exchange-type aberrations has been analyzed, and the dose average-LET measured as a function of the shield thickness. These preliminary results prove that the effectiveness of heavy ions is modified by shielding, and the biological damage is dependent upon shield thickness and material.  相似文献   

7.
Simian virus (SV40) DNA was used to study the induction of DNA strandbreaks by heavy ions varying in LET. DNA was exposed to X-rays and to accelerated particles either in dilute solution or in the presence of different radical scavengers. Relative proportions of the intact supercoiled DNA, nicked form arising from single strand breaks (SSB) and linear molecules produced by double strandbreaks (DSB) were quantified on the base of their electrophoretic mobility in agarose gels. Cross sections for the induction of SSBs and DSBs were calculated from the slope of dose effect curves. Mercaptoethanol was found to protect more efficiently against DNA strand breakage than Tris. When the biological efficiency, i.e. the number of strand breaks per unit dose and molecule weight was evaluated as a function of LET, curves for SSB induction always showed a continuous decrease. For DSB induction, an increase in the yield of DSBs with a maximum around 500 keV/micrometer was observed in the presence of radical scavenger. This peak of biological efficiency gradually disappeared when the radiosensitivity of the system was increased, and was no longer apparent in the dilute buffer system, where DNA showed a high susceptibility to strand breakage. When the relative biological efficiency was plotted versus LET, the curve for DSB induction observed in a low radical scavenging environment paralleled the curve obtained for SSB induction.  相似文献   

8.
9.
Mutagenic effects of heavy ion radiation in plants.   总被引:5,自引:0,他引:5  
Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high-LET heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. RFLP analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.  相似文献   

10.
The aim of this research was to determine the biological effectiveness for early and delayed effects of high energy, high linear energy transfer (LET) charged particles. Survival and delayed reproductive death were measured in AG1522 human fibroblast cells exposed to Fe-ion beams of energies between 0.2 and 1 GeV/n, 0.97 GeV/n Ti-ion and 0.49 GeV/n Si-ion beams. The cells were irradiated at the HIMAC accelerator in Chiba, Japan (0.2 and 0.5 GeV/n Fe and 0.49 GeV/n Si) and at the NASA Space Radiation Laboratory in Brookhaven, USA (1 GeV/n Fe and 0.97 GeV/n Ti ions). The dose-effect curves were measured in the dose range between 0.25 and 2 Gy. For comparison cells were exposed to 60Co gamma rays. Analysis of the dose-effect curves show that all the heavy ion beams induce inactivation and delayed reproductive death more effectively than 60Co gamma rays. The only exception is the 0.2 GeV/n Fe-ion beam at low doses. The progeny of the irradiated cells show delayed damage in the form of reproductive death with all the heavy ion beams with the 1 GeV/n Fe-ion beam being the most effective. The relative biological effectiveness at low doses of the iron beams is highest for LET values between 140 and 200 keV/micrometers with values of 1.6 and 3 for early and delayed reproductive death, respectively. Analysis of the fluence-effect curves shows that the cross-sections for early and delayed inactivation increase with increasing LET up to 442 keV/micrometers.  相似文献   

11.
G2-chromosome aberrations induced by high-LET radiations.   总被引:1,自引:0,他引:1  
We report measurement of initial G2-chromatid breaks in normal human fibroblasts exposed to various types of high-LET particles. Exponentially growing AG 1522 cells were exposed to gamma rays or heavy ions. Chromosomes were prematurely condensed by calyculin A. Chromatid-type breaks and isochromatid-type breaks were scored separately. The dose response curves for the induction of total chromatid breaks (chromatid-type + isochromatid-type) and chromatid-type breaks were linear for each type of radiation. However, dose response curves for the induction of isochromatid-type breaks were linear for high-LET radiations and linear-quadratic for gamma rays. Relative biological effectiveness (RBE), calculated from total breaks, showed a LET dependent tendency with a peak at 55 keV/micrometer silicon (2.7) or 80 keV/micrometer carbon (2.7) and then decreased with LET (1.5 at 440 keV/micrometer). RBE for chromatid-type break peaked at 55 keV/micrometer (2.4) then decreased rapidly with LET. The RBE of 440 keV/micrometer iron particles was 0.7. The RBE calculated from induction of isochromatid-type breaks was much higher for high-LET radiations. It is concluded that the increased production of isochromatid-type breaks, induced by the densely ionizing track structure, is a signature of high-LET radiation exposure.  相似文献   

12.
DNA double-strand breaks (DSBs) are the crucial events ultimately leading to cell inactivation. Aimed at understanding the biological action of the charged particle component of cosmic radiation, the induction of DSBs and their repairability was evaluated in Chinese hamster ovary (CHO-K1) cells after exposure to accelerated particles. Irradiations were performed with various ion species including O, Ni and Ca, covering a LET range from 20 to 2000 keV/micrometer. DSBs were determined for plateau-phase cells using the electrophoretic elution of radiation-induced DNA fragments in a static electric field combined with fluorescence scanning of ethidium bromide stained gels. Assuming a DSB yield of 22 DSB per Gy per cell, as derived from X-irradiation, cross-sections for DSB production were calculated from the corresponding fluence-effect curves at a fraction of 0.7 of DNA retained. The same ordinate was used as a reference for the calculation of relative biological efficiency (RBE) for DSB induction. At low LETs (< or = 20 keV/micrometer) RBE values slightly above unity were obtained, but a decrease of RBE was observed with increasing LET. In the region of 100-200 keV/micrometer the RBE for initial DSB induction was clearly below unity. Rejoining of DSBs was assessed by measuring the fraction of DNA retained following post-irradiation incubation of cells under culture conditions. After exposure to Ca ions, DSB rejoining was considerably impaired compared to X-rays.  相似文献   

13.
The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.  相似文献   

14.
The purpose of this study was to evaluate dose–response relationships for the in vivo induction of micronuclei (MN) as a measure of both initial radiation damage and the induction of genomic instability. These measurements were made in mouse blood erythrocytes as a function of radiation dose, radiation quality, time after irradiation, and the genetic background of exposed individuals. Blood samples were collected from two strains of mouse (CBA/CaJ and C57BL/6J) at different times up to 3 months following a whole-body exposure to various doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy, at the dose rate of a 1 Gy/min) or 137Cs gamma rays (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min). Blood-smear slides were stained with acridine orange (AO). The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and in immature polychromatic-erythrocytes (MN-PCEs). Effects of both types of radiation on erythropoiesis were also evaluated. As a measure of cell progression delay, a dose-dependent decrease in numbers of PCEs was observed at day 2 post-exposure in both strains, regardless of radiation quality. Subsequently, the levels of PCEs increased in all exposed mice, reaching control levels (or higher) by day 7 post-exposure. Further, at day 2 after the exposure, there was no increase in the frequency of MN-PCEs in CBA/CaJ mice exposed to 56Fe ions while the frequency of MN-PCEs elevated as a function of dose in the C57BL/6J mice. At day 4, there was no dose related increase in MN-NCEs in either strain of mouse exposed to 137Cs gamma rays. Additionally, at the early sacrifice times (days 2 and 4), 56Fe ions were slightly more effective (per unit dose) in inducing MN-NCEs than 137Cs gamma rays in CBA/CaJ mice. However, there was no increase in the frequency of MN-NCEs at late times after an acute exposure to either type of radiation. In contrast, both types of radiation induced increased MN-PCEs frequencies in irradiated CBA/CaJ mice, but not C57BL/6J mice, at late times post-exposure. This finding indicates the potential induction of genomic instability in hematopoietic cells of CBA/CaJ mice by both types of radiation. The finding also demonstrates the influence of genetic background on radiation-induced genomic instability in vivo.  相似文献   

15.
Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.  相似文献   

16.
Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu 56Fe ions either as acute or fractionated exposures at total doses of 5 - 504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of 60Co gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu 56Fe ions was greater than for low-LET radiation and increased with decreasing dose relative to gamma-rays. Fractionation of a given dose of 56Fe ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.  相似文献   

17.
Cytogenetic effects of energetic ions with shielding   总被引:1,自引:0,他引:1  
In order to understand the effects of shielding on the induction of biological damages by charged particles, we conducted experiments with accelerated protons (250 MeV) and iron particles (1 GeV/u). Human lymphocytes in vitro were exposed to particle beams through polyethylene with various thickness, and chromosomal aberrations were determined using FISH technique. Dose response curves for chromosome aberrations were obtained and compared for various particle types. Experimental results indicated that for a given absorbed dose at the cell, the effectiveness of protons and iron particles in the induction of chromosomal aberrations was not significantly altered by polyethylene with thickness up to 30-cm and 15-cm respectively. Comparing with gamma rays, charged particles were very effective in producing complex chromosomal damages, which may be an important mechanism in alterating functions in nondividing tissues, such as nervous systems.  相似文献   

18.
We investigated the spatial distribution of the induction of the phosphorylated form of the histone protein H2AX (gamma-H2AX), known to be activated by DSBs. Following irradiation of human fibroblast cells with 600 MeV/nucleon silicon and 600 MeV/nucleon iron ions we observed the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in an x/y plane. Polyethylene shielding was used to achieve a Bragg curve distribution with beam geometry parallel to the monolayer of cells. We present data that highlights the formation of immunofluorescent gamma-H2AX tracks showing the ion trajectories across the Bragg peak of irradiated human fibroblast cells. Qualitative analyses of these distributions indicated potentially increased clustering of DNA damage before the Bragg peak, enhanced gamma-H2AX distribution at the peak, and provided visual evidence of high-linear energy transfer particle traversal of cells beyond the Bragg peak in agreement with one-dimensional transport approximations. Spatial assessment of gamma-H2AX fluorescence may provide direct insights into DNA damage across the Bragg curve for high charge and energy ions including the biological consequences of shielding and possible contributors to bystander effects.  相似文献   

19.
Based on irradiation with 45 MeV/u N and B ions and with Co-60 gamma rays, cellular parameters of Katz's track structure model have been fitted for the survival of V79-379A Chinese hamster lung fibroblasts. Cellular parameters representing neoplastic transformations in C3H10T/1/2 cells after their irradiation with heavy ion beams, taken from earlier work, were also used to model the radiation hazard in deep space, following the system for evaluating, summing and reporting occupational exposures proposed in 1967 by a subcommittee of NCRP. We have performed model calculations of the number of transformations in surviving cells, after a given fluence of heavy charged particles of initial energy 500 MeV/u, penetrating thick layers of cells. We take the product of cell transformation and survival probabilities, calculated along the path lengths of charged particles using cellular survival and transformation parameters, to represent a quantity proportional to the "radiation risk factor" discussed in the NCRP document. The "synergistic" effect of simultaneous charged particle transfers is accounted for by the "track overlap" mode inherent in the model of Katz.  相似文献   

20.
We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/μm. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/μm, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号