首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
利用全球磁流体力学(MHD)模拟结果,通过确立包含磁层顶的太阳风流线内边界来识别三维磁层顶位形,并以极尖区位置作为磁层顶日侧与夜侧的分界线,在此基础上定量研究了不同条件下穿过磁层顶向磁层内输入的电磁能量. 研究发现,磁层顶的能量传输与太阳风条件密切相关,磁重联是控制电磁能量传输的重要机制. 结果表明,当IMF(行星际磁场)南向时,极尖区后方的磁尾附近存在电磁能输入最大值,当IMF北向时,电磁能输入最大值发生在极尖区附近;南向IMF条件下,在IMF强度增大或太阳风密度增大时,磁层顶电磁能传输的电磁能量比北向IMF条件时增加更显著. 太阳风通过调节磁层顶面积间接影响到磁层顶能量传输大小. 研究还发现,北向IMF与南向IMF条件下穿过磁层顶的电磁能输入的比值范围约为10%~30%,此比值一定程度上反映了北、南方向IMF与地磁场磁重联效率的比值.  相似文献   

2.
从太阳风-磁层能量耦合的普遍表达式出发,用34天连续的太阳风观测资料对电磁耦合机制进行了数值检验.结果表明,只有当行星际磁场有南向分量的时候,电磁耦合机制才能近似表示太阳风-磁层能量耦合过程.此时,能量输入率可以表示成p=CBT2/3V5/3n1/3sin4(θ/2)这个函数与Akasofu能量耦合函数ε=VB2l02sin4(θ/2)有一定差别,但与Murayama和Hakamada,Svalgaard,Holzer和Slavin等人的结果一致.本文对影响能量耦合函数计算的几个问题从原始资料、处理方法及物理机制上进行了讨论.   相似文献   

3.
赵明现 《空间科学学报》2022,42(6):1068-1078
以ACE卫星实时观测数据驱动的全球磁流体模拟为背景场,选取2003年10月22-24日行星际磁场(IMF)持续北向的事件,使用试验粒子方法,对太阳风粒子向磁层输运的过程进行模拟研究,分析北向IMF下太阳风粒子注入磁层过程中粒子在磁层内的空间分布和时间演化特征。IMF北向期间,进入环电流区域的粒子在晨侧区域的密度大于昏侧,且晨侧的粒子分布范围更广。背阳面磁鞘中的太阳风粒子可以通过低纬边界层进入磁层,但很难通过南北侧磁层顶进入磁层。进入磁尾的太阳风粒子聚集形成冷而密的等离子体片(CDPS),模拟中CDPS的空间分布和密度大小与观测数据符合。在IMF长时间北向期间,磁尾的粒子数量呈现随时间增长的趋势,并存在约20 min的小幅度准周期变化和约5~6 h的较大幅度的准周期变化。   相似文献   

4.
基于1995-2004年ICME驱动的强烈磁暴(SA型)、强磁暴(SB型)和延迟型主相暴(SC型)三种磁暴类型,对1AU处太阳风动压、太阳风速度、行星际磁场、EK-L电场以及极光沉降能量进行时序叠加分析,并分别与-vBz耦合函数和Newell耦合函数进行对比.结果表明,三种磁暴在ICME到达前期的太阳风动压较稳定,背景太阳风、极光沉降能量、行星际磁场和磁层存在相对平静期.ICME到达前期SA型磁暴的背景太阳风速度、行星际磁场南向分量以及极光沉降能量的均值高于另外两种磁暴类型,这说明大型日冕物质抛射在ICME到达前就对行星际磁场、背景太阳风和HP产生了影响.磁暴急始后,SC型磁暴的EK-L电场斜率小,峰值延后且行星际磁场北向分量增强,这些都是磁暴主相延迟的表现,极光沉降能量随着行星际磁场转为南向而增加.  相似文献   

5.
根据磁层粒子动力学理论, 通过偶极磁场模型验证利用三维试验粒子轨道方法模拟近地球区(r < 8Re)带电粒子运动特征的可靠性. 在此基础上, 以太阳风和磁层相互作用的全球MHD模拟结果为背景, 利用三维试验粒子轨道方法, 对非磁暴期间南向行星际磁场背景下太阳风离子注入磁层的情形进行数值模拟, 并对北向行星际磁场背景下太阳风离子注入极尖区以及内磁层的几种不同情形进行了单粒子模拟. 模拟结果反映了南向和北向行星际磁场离子向磁层的几种典型输入过程, 揭示出行星际磁场南向时太阳风粒子在磁层内密度分布的晨昏不对称性以及其在磁鞘和磁层内的大致分布, 并得出统计规律. 模拟结果与理论预测和观测结论相一致, 且通过数值模拟发现, 行星际磁场北向时靠近极尖区附近形成的非典型磁镜结构对于能量粒子经由极尖区注入环电流区域过程有重要的影响和作用.   相似文献   

6.
午后极光强度与太阳风-磁层耦合函数的相关   总被引:1,自引:0,他引:1  
利用1997年和1998年南极中山站多通道扫描光度计的地面观测数据和Wind卫星在弓激波上游对行星际磁场和太阳风参数的观测数据,对午后高纬极光强度与太阳风-磁层耦合函数之间的相关性进行定量研究.研究表明,午后630.0nm极光强度与太阳风-磁层耦合函数间有很好的相关,而557.7nm的相关性差一些;在考察的所有耦合函数中,午后极光受太阳风电场和能量的影响更直接;同时,行星际磁场的时钟角对午后极光也有很强的控制作用.  相似文献   

7.
磁层亚暴是太阳风–磁层–电离层耦合过程中的重要爆发性事件,其特性受太阳风参数的影响很大。本文利用对IMAGE卫星在2000 - 2005年观测到的4193个亚暴起始事件,统计研究了在不同的行星际磁场(IMF)Bz 条件下亚暴起始位置和膨胀相持续时间。结果表明,南向IMF发生的亚暴比北向IMF下发生的亚暴要多。南向IMF条件下亚暴AE指数最大值的平均值基本上>600 nT,并有随南向IMF持续时间增大而增大的趋势。北向IMF条件下亚暴AE指数最大值的平均值基本上<500 nT,并有随北向IMF持续时间增大而减小的趋势。亚暴的起始磁纬度基本上位于65° - 70°之间。当南向IMF或北向IMF的持续时间增大,超过80 min时,北半球的亚暴起始磁纬度会降低。亚暴起始磁地方时大部分位于22:15 - 23:15 MLT之间。但整体分布比较分散,显示不出特别清晰的随IMF Bz持续时间变化的趋势。相比于南向的IMF,北向IMF期间发生亚暴的平均膨胀相持续时间增大了将近10 min,表明南向IMF期间,亚暴强度虽然较大,但其膨胀相持续时间较短,亚暴能量释放和耗散的速度更快。   相似文献   

8.
大尺度场向电流的控制因素   总被引:2,自引:0,他引:2       下载免费PDF全文
将ISEE-1和ISEE-2飞般测量的地球内磁层场向电流作为行星际磁场与极区地磁活动水平(由AL表征)的函数。发现大约75%的场向电流发生在行星际磁场南向时,其余25%发生在行星际磁场由南向转到北向的半小时内。而且,发生在AL〈-150nT的场向电流也大约是75%。场向电流的强度和密度随行星际磁场南向分量及AL的负值增加而增大。由此而得出结论,内磁层场向电流的产生主要是由行星际磁场控制的,是太阳风  相似文献   

9.
本文用典型事件和统计分析论证了行星际磁场北向分量触发地磁扰动的可能性.给出了行星际电场Ey分量对磁层大尺度对流电场EM的耦合系数.从耦合方程出发讨论了磁层对太阳风作用的响应,证明磁层不是起半波整流器作用,从而表明经典的重联理论应有所修改.   相似文献   

10.
本文在假定磁层顶为切向间断面的近似下分析了可压缩K-H不稳定波在磁层顶两侧的能量分配及能量和动量输运,讨论了相应的物理机制.计算表明,K-H不稳定性确实能在太阳风-磁层耦合中起重要作用.   相似文献   

11.
Relationship between the solar wind-magnetosphere energy coupling function and the energy consumption in the magnetospheric system is tested by the samples during period of northward Bz(>10 nT) of IMF. It is shown that the energy function which can well describe the solar wind-magnetosphere coupling when Bz>0 is no more applicable for Bz>10 nT, but the coupling still exists, the effects of which are mainly found at the polar cap. Dst often turns to positive when Bz> 10 nTand the coupling mechanism is different from that when Bz<0. New coupling function has to be introduced to describe the solar wind-magnetosphere coupling for the case of Bz> 10 nT.   相似文献   

12.
磁层顶是太阳风与磁层进行质量、动量、能量交换的关键区域.磁层顶穿越事件(MCEs)可通过对卫星探测到的粒子能谱和磁场数据图进行人工分析的方式来识别.因太阳风动压和行星际磁场的易变性,位于磁层顶附近的卫星经过长期观测可能会经历成千上万次的磁层顶穿越.人工分析的方法工作量巨大,而且识别速度慢.本文发展了一种新的日下点附近MCEs自动识别算法.此算法综合分析卫星探测到的粒子和磁场数据,能有效地减少误判的发生.为了验证算法的有效性,采用单CPU计算机对THEMIS卫星在2007—2018年靠近日下点附近观测到的数据进行MCEs自动识别,最终在约6h共识别出16758个MCEs.这些自动识别出来的MCEs样本可用于统计研究磁层顶相关的诸多物理问题,如凹陷磁层顶、太阳风与磁层相互作用,磁层顶磁场重联等.同时还分析了算法的精确性和局限性.  相似文献   

13.
基于Gopalswamy预报日冕物质抛射(CME)渡越时间的经验模型,选取1996-2007年间52个与地磁效应Dst<-50nT相关的CME事件以及10个引起特大磁暴(Dst<-200nT)的CME事件,结合ACE卫星在1AU处的太阳风观测资料,分析背景太阳风对流效应对CME到达1AU处渡越时间预报的影响.对于52个CME事件,考虑太阳风对流效应的影响后,预报的标准偏差由16.5h降为11.4h,修正后的误差分布趋向于高斯分布,并且68%事件的预报误差小于15h.对于10个引起特大磁暴的CME事件,考虑太阳风对流效应的影响后,预报的标准偏差由10.6h降低到6.5h,其中6个事件的预报误差小于5h.研究结果表明,对于CME事件,考虑背景太阳风对流效应的影响可以降低预报CME渡越时间的标准偏差,说明太阳风对流效应对预报CME事件渡越时间具有重要作用.  相似文献   

14.
利用全球磁流体力学模拟,研究了高速太阳风条件下日侧磁层顶的磁通量传输事件(FTE)发生率的空间分布.从模拟结果中得到了FTE信号,并且这些FTE信号的特征与观测结果基本一致.磁层顶上的10个取样点共观测到39个FTE信号.统计分析表明,越靠近翼侧则观测到的FTE信号越少.这一现象可能是磁鞘中太阳风速度分布差异导致的.  相似文献   

15.
MAGDAS PEN was established on 19th September 2019 as one of the MAGDAS observatory arrays located at Universiti Sains Malaysia (USM) (5.15°, 100.50°). The main objective of the MAGDAS project is to monitor global electromagnetic and the ambient plasma density in the geospace environment. This installation has contributed to a better understanding of the Sun-Earth coupling system. This paper presents the installation process of one of the MAGDAS magnetometers named YU-8 T magnetic sensor and provides a preliminary analysis of geomagnetic HDZ components amplitude-time that was observed at PEN station. A one-month HDZ-geomagnetic field data was processed from 1st November to 30th November 2019. The daily variations with a consistent pattern in delta H geomagnetic field components are observed throughout the day with eastward electric field effects that are observed during solar peak hours. The delta H-component gradually increases around 0700LT and reaches the maximum reading at 1300LT with a range of value ~ 40-70nT. The value slowly decreases that started from 1400LT until the night time. The reading during the night time shows a constant variation with magnitude varies in between ?10nT to + 10nT. The average H-component value of the night time is used as the baseline for the observation system. Overall, the observed trends portray a good sign of solar quiet field and Sq with no solar-terrestrial disturbances.  相似文献   

16.
During the first half of November 2004, many solar flares and coronal mass ejections (CMEs) were associated with solar active region (AR) 10696. This paper attempts to identify the solar and interplanetary origins of two superstorms which occurred on 8 and 10 November with peak intensities of Dst = −373 nT and −289 nT, respectively. Southward interplanetary magnetic fields within a magnetic cloud (MC), and a sheath + MC were the causes of these two superstorms, respectively. Two different CME propagation models [Gopalswamy, N., Yashiro, S., Kaiser, M.L. et al. Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207–29219, 2001; Gopalswamy, N.S., Lara, A., Manoharan, P.K. et al. An empirical model to predict the 1-AU arrival of interplanetary shocks. Adv. Space Res. 36, 2289–2294, 2005] were employed to attempt to identify the solar sources. It is found that the models identify several potential CMEs as possible sources for each of the superstorms. The two Gopalswamy et al. models give the possible sources for the first superstorm as CMEs on 2330 UT 4 November 2004 or on 1454 UT 5 November 2004. For the second superstorm, the possible solar source was a CME that on 0754 UT 5 November 2004 or one that occurred on 1206 UT 5 November 2004. We note that other propagation models sometimes agree and other times disagree with the above results. It is concluded that during high solar/interplanetary activity intervals such as this one, the exact solar source is difficult to identify. More refined propagation models are needed.  相似文献   

17.
广州地磁Z分量日变幅的谱特征   总被引:1,自引:0,他引:1  
利用1972—1993年广州地磁资料,分析了Z分量日变幅的年平均、年变化和半年变化等低频成分的逐年变化,以及小于60天的短周期变化特征.同时对1972—1993年的F10.7日均值进行了谱分析.结果指出,广州地磁Z分量日变幅的年平均与太阳活动指数F10.7的年平均存在良好的线性相关;具有幅度大约5nT夏季极大的年变化,与太阳活动没有明显相关,是一种季节效应;存在春秋分极大的半年变化,幅度与太阳活动有关,高年的幅度明显大于低年;具有明显的与太阳自转相关的27天左右的变化和明显的与行星波有关的接近16日、10日、5日、2日等短周期变化.广州地磁Z分量日变幅的这些谱特征,有助于更深入地了解中低层大气对电离层影响的物理机制.  相似文献   

18.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号