共查询到20条相似文献,搜索用时 15 毫秒
1.
The general theory of side-looking synthetic aperture radar systems is developed. A simple circuit-theory model is developed; the geometry of the system determines the nature of the prefilter and the receiver (or processor) is the postfilter. The complex distributed reflectivity density appears as the input, and receiver noise is first considered as the interference which limits performance. Analysis and optimization are carried out for three performance criteria (resolution, signal-to-noise ratio, and least squares estimation of the target field). The optimum synthetic aperture length is derived in terms of the noise level and average transmitted power. Range-Doppler ambiguity limitations and optical processing are discussed briefly. The synthetic aperture concept for rotating target fields is described. It is observed that, for a physical aperture, a side-looking radar, and a rotating target field, the azimuth resolution is ?/? where ? is the change in aspect angle over which the target field is viewed, The effects of phase errors on azimuth resolution are derived in terms of the power density spectrum of the derivative of the phase errors and the performance in the absence of phase errors. 相似文献
2.
Motion Compensation for Synthetic Aperture Radar 总被引:2,自引:0,他引:2
A generalized motion compensation approach applicable to all SAR modes, i.e., strip mapping (side-looking or squint), spotlight (or telescope) mapping, and Doppler beam sharpened mapping (DBS), is described. The basic concept is the formation for unit vector ? and the slaving of the real illuminating antenna and the processed synthetic antenna to this unit vector. The amount of motion compensation which is required is developed in terms of transfer curves for the main motion reduction paths, i.e., translational, rotational (lever arm), and real antenna stabilization. The transfer curves are obtained by dividing the expected motion spectrum by the required sensitivity spectrum. The most critical motion reduction path for typical parameters is shown to be the translational path. The lever arm and real antenna stabilization paths are less critical, but must also be implemented. 相似文献
3.
A new concept in synthetic aperture radar, called SASAR, which uses a segmented aperture, is described. Use of the segmented aperture allows appreciable extra receiving antenna gain to be realized. Each subarray of the receive antenna is equal in length to the transmit antenna; the system performance is increased approximately by a factor equal to the number of subarrays. To allow array combination of the subarray signal outputs requires a phase-shift factor (varying with azimuth) to be applied to each subarray signal. A digital implementation of this preprocessor is sketched out; it uses a push-down storage stack to store the range histories for a synthetic aperture from each subarray. Appropriate phase shifts are added to the stacks and a sum of stack values then provides the combined output range history sequence. Possibilities of using analog delay lines for preprocessing are also discussed. Pattern errors due to subarray size and receive array near field are examined and constraints are given. 相似文献
4.
Several aspects of range and azimuth (time delay and Doppler) ambiguities in spaceborne synthetic aperture radars (SARs) are examined. An accurate method to evaluate the ratio of the intensities of the ambiguities to that of the signal is described. This method has been applied to the nominal SAR system on SEASAT and the variations of this ratio as a function of orbital latitude and attitude control error are discussed. It is also shown that the detailed range migration-azimuth phase history of an ambiguity is different from that of a signal. The images of ambiguities are, therefore, dispersed. Several examples of such dispersed images observed by the SEASAT SAR are presented. These dispersions are eliminated when the processing parameters are adjusted appropriately. Finally, a method is described which uses a set of multiple pulse repetition frequencies to determine the absolute values of the Doppler centroid frequencies for SARs with high carrier frequencies and relatively poor attitude measurements. 相似文献
5.
Synthetic Aperture Imaging Radar and Moving Targets 总被引:7,自引:0,他引:7
This paper considers the effects of slowly moving targets as they appear in the output of an airborne coherent side-looking synthetic aperture imaging radar. The image of a moving reflector is described, and two approaches to airborne moving target indication (AMTI) are summarized. It is shown that the effects of target movement are decreased as the radar scan rate is increased, and are increased as the (Doppler processed) compression ratio is increased. 相似文献
6.
A data compression technique is developed for synthetic aperture radar (SAR) imagery. The technique is based on an SAR image model and is designed to preserve the local statistics in the image by an adaptive variable rate modification of block truncation coding (BTC). A data rate of approximately 1.6 bit/pixel is achieved with the technique while maintaining the image quality and cultural (pointlike) targets. The algorithm requires no large data storage and is computationally simple. 相似文献
7.
随着合成孔径雷达(SAR)系统在军事领域中的广泛应用,各军事强国纷纷开展了对SAR系统的对抗策略和技术研究,寻求有效对抗SAR成像侦察系统的制胜之策。经过多年的探索和实践,有一种看法已经被普遍认可,即在现有技术条件下,完全可以采用多种电子对抗措施(ECM)来破坏SAR系统的作战能力。 相似文献
8.
Moore R.K. Claassen J.P. Lin Y.H. 《IEEE transactions on aerospace and electronic systems》1981,(3):410-421
Spaceborne synthetic aperture radar systems are severely constrained to a narrow swath by ambiguity limitations. Here a vertically scanned-beam synthetic aperture system (SCANSAR) is proposed as a solution to this problem. The potential length of synthetic aperture must be shared between beam positions, so the along-track resolution is poorer; a direct tradeoff exists between resolution and swath width. The length of the real aperture is independently traded against the number of scanning positions. Design curves and equations are presented for spaceborne SCANSARs for altitudes between 400 and 1400 km and inner angles of incidence between 20° and 40°. When the real antenna is approximately square, it may also be used for a microwave radiometer. The combined radiometer and synthetic-aperture (RADISAR) should be useful for those applications where the poorer resolution of the radiometer is useful for some purposes, but the finer resolution of the radar is needed for others. 相似文献
9.
This is a summary paper describing the processing of synthetic aperture radar (SAR) data using digital correlation algorithms. Fundamental SAR theory as it applies to the various SAR modes, namely, strip mapping, spotlight mapping, and Doppler beam sharpened mapping, is described and a baseline design applicable to all SAR modes is presented. Digital processor design is developed, starting with a simple single filter mechanization and proceeding through more complex processing algorithms. Prefilter design is discussed, as is the more advanced processing algorithms, namely, multiple parallel prefilters, two-stage correlation, and FFT processing. The primary processor tradeoff is increased functional complexity versus reduced arithmetic and memory requirements. For high-resolution applications, the arithmetic requirements can be reduced by an order of magnitude or more by implementing the more advanced processing algorithms. 相似文献
10.
A statistical model is developed that portrays an imaging radar as a noisy communication channel with multiplicative noise, and the model is used to evaluate the average amount of information that can be extracted about a target from its radar image. The average information content is also used to define a measure of radiometric resolution for radar images. It is shown that the information content and the resolution capabilities of an imaging radar reach a limit beyond which an increase in scene dynamic range does not improve the information content or the resolution. This limitation results from the multiplicative nature of the noise introduced in the imaging process. 相似文献
11.
12.
Synthetic Aperture Radars 总被引:1,自引:0,他引:1
13.
Evans R.J. Hewett C.R. Barker F. 《IEEE transactions on aerospace and electronic systems》1979,(1):125-133
The problem of selecting search radar system parameters to achieve desired track-while-scan performance is investigated at a fundamental theoretical level. The vehicle being tracked is modeled as an object traveling at a random velocity along a random highway. The radar is modeled as a noisy sampler which occassionally drops samples. The best achievable tracking performance in a least-squares error sense of this vehicle/sampler combination is analyzed in general and for a variety of specific situations. 相似文献
14.
A digital processing approach has been devised for performing motion compensation in a high-resolution airborne synthetic aperture radar in the presence of simultaneous longitudinal (speed change), lateral (turn), and vertical (climb or dive) maneuvers. Both side-look and squint are accommodated in a unified scheme, which is validated by various simulation runs reported herein. Present attention is focused on theoretical verification, irrespective of mechanization or specific parameter values. 相似文献
15.
A new type of synthetic radar, the circular synthetic radar, uses a simple interferometer whose elements are mounted at the ends of a horizontal boom rotating about a vertical mast. Pulses are radiated alternately ?in-phase? and in ?phase-quadrature.? The returning echoes are also detected incoherently, both ?in-phase? and in ?phase-quadrature.? The four distinct outputs are fed into an on-line computer which, after a Fourier analysis, synthesizes a mapping function of the azimuthal distribution of targets. 相似文献
16.
In synthetic aperture radar a large linear phased array is formed from the rapid movement of a single element through each position in the array. Storage and coherent combining of the successive radar echoes are central to the array-forming process. Optical processing is the most common technique because of the efficiency with which Fourier transformation may be accomplished with simple optics. Real-time operation, however, requires all-electronic processing, which is difficult to accomplish because of the huge quantity of data to be manipulated. Dynamic range compression by hard limiting may ease the problem by reducing the number of bits per frame. The effects of hard limiting are analyzed in this paper. It is shown that large targets simultaneously illuminated by the radar antenna will produce image targets or ghosts displaced in angle. Statistically homogeneous clutter will "linearize" the hard-limited receiver and suppress the ghosts without loss in contrast, as does thermal noise if it is larger than the target echoes. Pulse compression reduces the probability of images from prominent targets. Judicious choice of the pulse-compression waveform is a powerful tool for destroying coherent buildup of images from all large targets not in the same range resolution cell. Linear FM, the most common choice, unfortunately does not exhibit this desirable property. 相似文献
17.
Brown W.M. Houser G.G. Jenkins R.E. 《IEEE transactions on aerospace and electronic systems》1973,(2):166-176
The number of transmitted pulses associated with the Doppler histories of a side-looking radar may greatly exceed the desired azimuth compression ratio of the system. This discrepancy is taxing if the storage required for the azimuth processing is provided by cores, magnetic drums, and the like. Thus, as a practical matter, one considers presumming of the data prior to correlation in an attempt to achieve the desired performance with a minimum amount of digital storage. In this paper, the optimum (in terms of resolution) presummer is derived, along with the optimum apportionment of the available storage capacity between the presumming and correlation operations. Under the condition (or generally pessimistic approximation) that the illumination pattern of the antenna uniformly illuminates a Doppler bandwidth equal to the PRF of the radar, the optimum presumming coefficients are the first Np Fourier coefficients of a function which is one of the Doppler bandwidth to be correlated and zero on the remainder of the PRF bandwidth, where Np is the number of transmitted radar pulses over which presumming is provided. Increasing Np reduces the degradation due to presumming, but may leave inadequate storage for correlation. Hence, we optimize the apportionment between the two operations and present the obtainable resolution as a function of total storage and the number of transmitted pulses in the received Doppler history. 相似文献
18.
轰炸雷达的核心是雷达计算机系统,既要具有很强的实时处理能力,又要具有高可靠性.本文从工程设计角度出发,详细介绍了轰炸雷达计算机系统的硬件设计. 相似文献
19.
Waveform Design for Multistatic Radar Detection 总被引:1,自引:0,他引:1
We derive the optimal Neyman-Pearson (NP) detector and its performance, and then present a methodology for the design of the transmit signal for a multistatic radar receiver. The detector assumes a Swerling I extended target model as well as signal-dependent noise, i.e., clutter. It is shown that the NP detection performance does not immediately lead to an obvious signal design criterion so that as an alternative, a divergence criterion is proposed for signal design. A simple method for maximizing the divergence, termed the maximum marginal allocation algorithm, is presented and is guaranteed to find the global maximum. The overall approach is a generalization of previous work that determined the optimal detector and transmit signal for a monostatic radar. 相似文献