首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bing SUN  Qi XU  Yang CHEN 《中国航空学报》2018,31(6):1232-1248
For a typical pressurized system with a novel dual-stage gas pressure reducing regulator, a system model is established with modular models of various typical components. The simulation study on the whole working period shows that the general trends and magnitudes of simulation curves are in agreement with experimental measured curves. As the key component in the pressurized system, the regulator is studied by a series of numerical simulations to reveal the influences of various structure parameters on its stability. Furthermore, the variable ranges which can guarantee the stability of regulator and system are obtained to provide guidance for design. The modeling and analysis approach can be applied to other systems and components.  相似文献   

3.
Wu Wei 《中国航空学报》2014,27(6):1363-1372
A comprehensive method based on system identification theory for helicopter flight dynamics modeling with rotor degrees of freedom is developed. A fully parameterized rotor flapping equation for identification purpose is derived without using any theoretical model, so the confidence of the identified model is increased, and then the 6 degrees of freedom rigid body model is extended to 9 degrees of freedom high-order model. Bode sensitivity function is derived to increase the accuracy of frequency spectra calculation which influences the accuracy of model parameter identification. Then a frequency domain identification algorithm is established. Acceleration technique is developed furthermore to increase calculation efficiency, and the total identification time is reduced by more than 50% using this technique. A comprehensive two-step method is established for helicopter high-order flight dynamics model identification which increases the numerical stability of model identification compared with single step algorithm. Application of the developed method to identify the flight dynamics model of BO 105 helicopter based on flight test data is implemented. A comparative study between the high-order model and rigid body model is performed at last. The results show that the developed method can be used for helicopter high-order flight dynamics model identification with high accuracy as well as efficiency, and the advantage of identified high-order model is very obvious compared with low-order model.  相似文献   

4.
In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor(HRM) powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization(DDO) and uncertainty-based design optimization(UDO) are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation(KMCS) and Kriging-based Taylor series approximation(KTSA), are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.In this paper,we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor(HRM)powered vehicle.The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified.The sensitivity analysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances.Then the differences between deterministic design optimization(DDO)and uncertainty-based design optimization(UDO)are discussed.Two newly formed uncertainty analysis methods,including the Kriging-based Monte Carlo simulation(KMCS)and Kriging-based Taylor series approximation(KTSA),are carried out using a global approximation Kriging modeling method.Based on the system design model and the results of design uncertainty analysis,the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods:DDO,KMCS and KTSA.The comparisons indicate that the two UDO methods can enhance the design reliability and robustness.The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.  相似文献   

5.
In the aerospace field, electromechanical actuators are increasingly being implemented in place of conventional hydraulic actuators. For safety-critical embedded actuation applications like flight controls, the use of electromechanical actuators introduces specific issues related to thermal balance, reflected inertia, parasitic motion due to compliance and response to failure. Unfortu-nately, the physical effects governing the actuator behaviour are multidisciplinary, coupled and nonlinear. Although numerous multi-domain and system-level simulation packages are now avail-able on the market, these effects are rarely addressed as a whole because of a lack of scientific approaches for model architecting, multi-purpose incremental modelling and judicious model implementation. In this publication, virtual prototyping of electromechanical actuators is addressed using the Bond-Graph formalism. New approaches are proposed to enable incremental modelling, thermal balance analysis, response to free-run or jamming faults, impact of compliance on parasitic motion, and influence of temperature. A special focus is placed on friction and compliance of the mechanical transmission with fault injection and temperature dependence. Aileron actuation is used to highlight the proposals for control design, energy consumption and thermal analysis, power net-work pollution analysis and fault response.  相似文献   

6.
飞行器跨声速区俯仰力矩系数建模方法研究   总被引:1,自引:0,他引:1  
飞行器气动力建模的准确性对其飞控系统设计、仿真和飞行性能分析有显著影响.在跨声速区马赫数变化对飞行器气动力影响显著,并且呈严重非线性,而在通常的气动力建模方法中却很少考虑马赫数的影响.本文对此问题进行了研究,根据某空空导弹和某返回舱俯仰力矩系数在跨声速区体现出来的特点,提出并建立了俯仰力矩系数随马赫数变化的概率函数模型.采用遗传算法辨识得到了某空空导弹和某返回舱的俯仰力矩系数建模结果,与风洞试验数据的比较表明,本文提出的概率函数模型确实比较好地描述了这些飞行器俯仰力矩系数在跨声速区随马赫数的变化规律.  相似文献   

7.
飞行仿真气动力数据机器学习建模方法   总被引:1,自引:0,他引:1  
基于机器学习思想,提出了一种大空域、宽速域的气动力建模方法。该方法利用飞行仿真弹道数据辨识的气动力数据,采用人工神经网络技术,实现了对高度、速度、姿态和舵偏角等多维度强非线性特性的全弹道气动力数据的高精度逼近。首先,分析了神经网络层数、隐含层神经元个数等对建模误差的影响,通过对典型弹道气动数据的神经网络建模计算,确定了较合适的神经网络层数和较优的隐层神经元个数。进而,利用飞行仿真的弹道数据辨识出沿弹道的气动力,采用神经网络建立了包含多个弹道融合的气动力模型,输出量分别为三轴气动力系数和力矩系数。最后通过气动模型输出量与原样本数据的对比,以及4条未参与训练弹道气动数据的预测,验证了该气动力建模方法具有较高的精度。建模结果表明:采用神经网络方法建立的飞行器气动力模型,对拟合多源耦合输入全弹道非线性气动力是可行的和有效的,在样本覆盖的高度、速度、姿态和控制舵偏角范围内,气动力拟合能力较强,并具有一定的外推性。该项研究可以为基于飞行试验数据的气动建模提供新的方法,并且能为飞行器气动力数据挖掘、飞行仿真和总体性能分析提供参考。  相似文献   

8.
A high-resolution simulation tool for rotorcraft aerodynamics is developed by coupling CFD with a Vorticity Transport Model (VTM). An Eulerian-based CFD module is used to model the blade near body flowfield, and a Lagrangian-based VTM module is employed for vortex tracking in the far wake. The coupling procedure is implemented by transmitting vortex sources to the VTM module and feeding boundary conditions back to the CFD module. The presented CFD/VTM hybrid solver is firstly validated by hover cases of three different rotor configurations. Simulation results, including the blade surface pressure distribution, rotor downwash, and hover figure of merit, exhibit favorable correlations with available experimental data. Then, a rotor operated in vertical descending flight with a fixed collective pitch is investigated. It is shown that the CFD/VTM coupling method is suitable for rotor wake simulation. Wake instabilities (far wake breakdown in hover and toroidal wake pattern in the vortex ring state) are successfully demonstrated with a moderate computational cost.  相似文献   

9.
鲁峰  黄金泉  佘云峰 《推进技术》2011,32(5):722-727
针对航空发动机控制和故障诊断中的状态变量模型求解存在的系数矩阵精度不高的问题,结合阶跃响应法和拟合法的基础上,提出了一种基于量子粒子群寻优(QPSO)求取发动机状态变量模型的混合求解法。QPSO优化算法求解A,C矩阵使得状态变量模型和非线性模型在动态过程具有较好的吻合,阶跃响应法求取B,D矩阵保证了模型稳态响应一致。利用混合求解法建立了某型涡轴发动机在某一稳态工作点下的小偏离状态变量模型。仿真结果表明,这种方法不仅增强了状态变量模型的求解精度,相对于单纯的拟合法缩短了求解时间,精确的状态变量模型为进一步的故障诊断和控制系统设计提供了条件。  相似文献   

10.
王洛烽  陈仁良 《航空学报》2021,42(12):124634-124634
针对重型直升机(HLH)大重量、低转速的固有特性,提出了一种适用于重型直升机的飞行动力学刚弹耦合建模方法。该方法结合传统直升机飞行动力学与旋翼机体耦合动力学,将传统飞行力学的分析频段拓展到了5 Hz,额外考虑了桨叶和机体的弹性变形,基于阻抗匹配法推导出了显式的旋翼/机体耦合动力学方程,模拟了真实飞行状态下的直升机气弹耦合特性,利用该模型计算并分析了算例重型直升机的悬停飞行特性和空中共振稳定性。结果表明:旋翼机体耦合导致摆振前进型和机体弹性模态的阻尼-转速曲线先相互靠近至同一点再分离,可能引起直升机的高频瞬态振动;在摆振等效阻尼不足时,旋翼摆振后退型是不稳定的,但随着等效阻尼增加,摆振二阶周期型模态和机体弹性模态会出现耦合;桨叶弹性变形与机体弯曲模态及挥舞集合型耦合,但不会引起明显的不稳定现象。  相似文献   

11.
为更好的对军用探测车运动过程进行控制,提出了轮履复合式探测车运动学模型的构建方法.通过对轮履复合式移动系统结构进行分析,首先建立了探测车三维运动学模型,并推出了其运动方程;其次建立了探测车车体速度与车轮速度之间的雅可比矩阵,利用最小二乘法对车体速度进行求解,提供了获得探测车越障过程中位置和方位的方法.最后对探测车行进过程进行了运动仿真,数值仿真分析验证了运动学模型的正确性及轮履复合式移动系统的运动特性.   相似文献   

12.
朱虹  孙青林  邬婉楠  孙明玮  陈增强 《航空学报》2019,40(6):122593-122593
前缘切口以及后缘下偏是影响伞衣气动力计算的关键因素。为实现伞翼无人机(UAV)的精确控制,从提高翼伞系统动力学模型的精度入手,在升力线理论的基础上,基于计算流体动力学方法,综合考虑前缘切口以及后缘下偏的影响,计算了不同切口尺寸模型的升力、阻力系数。利用最小二乘法辨识了升力、阻力系数与迎角、切口尺寸以及下偏量的关系,实现了翼伞气动力的精确计算,改进了伞翼无人机的六自由度动力学模型。对改进的动力学模型进行轨迹跟踪控制的仿真,通过与空投试验数据的对比,验证了改进翼伞系统动力学模型方法的准确性,对于伞翼无人机的仿真和控制器设计具有重要意义。  相似文献   

13.
针对滑翔式高超声速飞行器纵向失稳问题,基于连续算法和分岔理论,求解并分析了特征点单参数分岔图、平衡分支的稳定性和突变点,得出在大迎角飞行时存在较为严重的失稳现象;最后分析了多吸引点和迟滞效应现象.研究结果表明,滑翔式高超声速飞行器在大迎角飞行时存在严重失稳、多吸引域和复杂迟滞运动.此结果在实现飞行器稳定飞行和控制器设计方面具有很好的参考价值.  相似文献   

14.
对吸气式高超声速飞行器而言,内流道的流态对推进系统乃至飞行器的工作特性有重要影响.本文用风洞实验的方法研究了升力体(类X-43)、二元进气道和轴对称进气道三种构型在不同来流、内部几何和燃烧室反压条件下的内流道工作情况,着重分析了起动/不起动状态对内流道流动特征及全机气动力的影响,提出并发展了通过在燃烧室内喷射高压气流的内流道反压模拟技术,并运用这一技术成功实现了内流道由起动向不起动、由不起动向起动/再起动的切换.  相似文献   

15.
《中国航空学报》2021,34(1):32-43
The influence of the wing-tip vortex of leading aircraft on energy savings, quantified by formation aerodynamic force fraction of the following aircraft, is studied at transonic speed for a matrix of leading aircraft’s vortex locations. The research model adopts the hybrid formation of medium and large aircraft. The leading aircraft is scaled by 2.1%, and the following aircraft is scaled by 1.4%. An aerodynamic benefit “map” is developed to determine the optimum location of the following aircraft relative to the leading aircraft wake and to compare with experimental results, thus validating the use of CFD for the formation flight at cruising speed. The response surface model of aerodynamic gain effect relative to formation parameters is established via numerical calculation and wind tunnel test. The optimal formation parameters and the setting criteria of the study model are optimized. Results show that the wing-tip vortex of large aircraft significantly increases lift and reduces drag on the medium-sized aircraft following it. Reduced drag slightly increases with the flow direction position. With the increase of flow direction distance, the peak area moves from 15% of wing-tip overlap to 20% of overlap. In addition, the maximum drag decreases about 16%, and the maximum lift increases about 12%. The lift drag ratio of the optimal position is increased by 27%, which is twice as large as that of the same scale ratio aircraft formation. Results show that the increase of lift is mainly caused by the increase of suction peak and suction range.  相似文献   

16.
针对高成本的大型复合翼(VTOL)无人机(UAV)从悬停到巡航的纵向加速飞行转换阶段开展气动/控制综合研究。基于叶素动量(BEMT)理论建立斜向入流下旋翼气动载荷计算模型,并与CFD算例对比验证其准确性。分析出旋翼系统引起整机焦点前移产生静不定效应,其中心应置于全机重心之后。仿真对比不同加速策略下的加速特性、控制效能余量等指标,给出-5°俯仰角,定推进油门的加速策略。考虑控制输入冗余,作动器动态响应不同,引入虚拟控制量的概念,采用频域分解的效能分配准则实现静态分配。考虑建模误差,设计L1自适应姿态控制框架实现动态控制增稳,拉偏仿真验证其鲁棒性。飞行试验验证了所述建模方法、加速策略及控制律框架的有效性。   相似文献   

17.
In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support vector regression (MRR-LSSVR) machine is proposed. Firstly, the PS algorithm is designed to choose the most reasonable inputs of the adaptive module. During this process, a wrapper criterion based on least square support vector regression (LSSVR) machine is adopted, which can not only reduce computational complexity but also enhance generalization performance. Secondly, with the input variables determined by the PS algorithm, a mapping model of engine parameter estimation is trained off-line using MRR-LSSVR, which has a satisfying accuracy within 5&. Finally, based on a numerical simulation platform of an integrated helicopter/ turbo-shaft engine system, an adaptive turbo-shaft engine model is developed and tested in a certain flight envelope. Under the condition of single or multiple engine components being degraded, many simulation experiments are carried out, and the simulation results show the effectiveness and validity of the proposed adaptive modeling method.  相似文献   

18.
蒋启登 《航空学报》2020,41(12):224030-224030
拦阻钩是舰载飞机最重要的特征部件之一,对其受载进行测量、统计建模与预计具有重要的工程意义。在飞机拦阻动力学分析基础上确定了飞行数据统计建模所需的关键参数,结合某型机载荷试飞、机舰适配性试验,实测研究了飞机拦阻实际受载特点,采用线性或非线性方法统计建立了最大拦阻力与常规飞行参数之间的拟合函数关系,并得到了最大拦阻力的预计模型。建模、验模与预计结果表明,所选关键参数合理,能够充分反映拦阻钩的受载及其主要影响因素,采用纵向过载、啮合速度和发动机高压转速等参数建立的拦阻载荷统计模型可用于拦阻着陆或着舰试验时最大拦阻力的有效预测。  相似文献   

19.
液体火箭发动机系统瞬变过程模块化建模与仿真   总被引:12,自引:4,他引:12       下载免费PDF全文
刘昆  张育林  程谋森 《推进技术》2003,24(5):401-405
为对发动机研制过程中多种试验方案进行仿真预示和对发动机进行结构优化,研究了液体火箭发动机系统瞬变过程模块化建模与仿真方法。提出了流体管道系统的管道一体积模块化分解方法,将组成发动机系统的典型元部件划分为21个模块,并建立了仿真数学模型。提出了一种描述模块元件及其连接关系的系统组态矩阵,以及模块的组合连接方法和组合系统的仿真计算方法。在此基础上,研制了分级燃烧循环液氧/液氢发动机系统瞬变过程的模块化建模与仿真软件(LRETMMSS),建立了某型号液氧/液氢补燃发动机的半系统试验的仿真计算模型,进行了仿真计算,计算结果与实验数据吻合。  相似文献   

20.
《中国航空学报》2021,34(5):386-398
By integrating topology optimization and lattice-based optimization, a novel multi-scale design method is proposed to create solid-lattice hybrid structures and thus to improve the mechanical performance as well as reduce the structural weight. To achieve this purpose, a two-step procedure is developed to design and optimize the innovative structures. Initially, the classical topology optimization is utilized to find the optimal material layout and primary load carrying paths. Afterwards, the solid-lattice hybrid structures are reconstructed using the finite element mesh based modeling method. And lattice-based optimization is performed to obtain the optimal cross-section area of the lattice structures. Finally, two typical aerospace structures are optimized to demonstrate the effectiveness of the proposed optimization framework. The numerical results are quite encouraging since the solid-lattice hybrid structures obtained by the presented approach show remarkably improved performance when compared with traditional designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号