首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Acta Astronautica》2009,64(11-12):1233-1238
Providing reliable power over the anticipated mission life is critical to all satellites; therefore solar arrays are one of the most vital links to satellite mission success. Furthermore, solar arrays are exposed to the harshest environment of virtually any satellite component. In the past 10 years 117 satellite solar array anomalies have been recorded with 12 resulting in total satellite failure. Through an in-depth analysis of satellite anomalies listed in the Airclaim's Ascend SpaceTrak database, it is clear that solar array reliability is a serious, industry-wide issue. Solar array reliability directly affects the cost of future satellites through increased insurance premiums and a lack of confidence by investors. Recommendations for improving reliability through careful ground testing, standardization of testing procedures such as the emerging AIAA standards, and data sharing across the industry will be discussed. The benefits of creating a certified module and array testing facility that would certify in-space reliability will also be briefly examined. Solar array reliability is an issue that must be addressed to both reduce costs and ensure continued viability of the commercial and government assets on orbit.  相似文献   

2.
卫星太阳电池阵在轨故障统计及分析   总被引:1,自引:0,他引:1  
文章针对2000年1月至2012年9月期间79颗在轨卫星发生的114次太阳电池阵故障事件进行了分类统计分析,并利用Kaplan-Meier估计量分析方法对这些在轨故障进行了可靠性分析。结果表明:太阳电池阵的故障多发生在卫星在轨第一年,其中电子类故障发生率较高;不同卫星平台的系统缺陷或设计共性问题也与太阳电池阵故障紧密相关。最后,结合我国卫星太阳电池阵设计及制造工艺技术,提出了加强出厂前的测试和试验验证、加强仿真建模、加强冗余设计等建议。  相似文献   

3.
Jennifer R. Tanzman   《Acta Astronautica》2008,63(11-12):1239-1245
Solar TErrestrial RElations Observatory (STEREO), the third mission in NASA's Solar Terrestrial Probes program, launched aboard a single Delta II 7925 launch vehicle on October 25, 2006 from Cape Canaveral. This two-year mission employs two nearly-identical, space-based observatories, one ahead of the Earth in its orbit, and the other trailing behind, to provide the first stereoscopic measurements of the sun and its coronal mass ejections, or CMEs. The STEREO observatories utilize four sets of solar arrays, each of which experienced a two-stage deployment on-orbit. This paper illustrates material considerations in the solar array subsystem design. It first focuses on the solar array substrate, considering material coefficient of thermal expansion (CTE) concerns when choosing a substrate laminate to which the solar cells will adhere. It then explores a similar issue when choosing a substrate insert material. Next, the focus shifts to material considerations in the solar array hinge design. This design was driven not just by function, but by a host of different material considerations, ranging from mass savings to fabrication time and cost.  相似文献   

4.
5.
《Acta Astronautica》2009,64(11-12):1239-1245
Solar TErrestrial RElations Observatory (STEREO), the third mission in NASA's Solar Terrestrial Probes program, launched aboard a single Delta II 7925 launch vehicle on October 25, 2006 from Cape Canaveral. This two-year mission employs two nearly-identical, space-based observatories, one ahead of the Earth in its orbit, and the other trailing behind, to provide the first stereoscopic measurements of the sun and its coronal mass ejections, or CMEs. The STEREO observatories utilize four sets of solar arrays, each of which experienced a two-stage deployment on-orbit. This paper illustrates material considerations in the solar array subsystem design. It first focuses on the solar array substrate, considering material coefficient of thermal expansion (CTE) concerns when choosing a substrate laminate to which the solar cells will adhere. It then explores a similar issue when choosing a substrate insert material. Next, the focus shifts to material considerations in the solar array hinge design. This design was driven not just by function, but by a host of different material considerations, ranging from mass savings to fabrication time and cost.  相似文献   

6.
Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.  相似文献   

7.
空间原子氧环境对太阳电池阵的影响分析   总被引:1,自引:0,他引:1  
空间原子氧是危害低地球轨道(LEO)航天器在轨性能的最主要空间环境因素之一,其强氧化性能够对包括太阳电池阵在内的航天器外表面暴露材料和组件造成危害。文章分析了某载人航天器在轨原子氧环境、原子氧对不同结构太阳电池阵所用材料的影响以及对太阳电池阵组件电性能的影响,结果表明原子氧对材料的作用能够引起太阳电池阵基板强度降低、电连接可靠性下降及电缆线护套失效等风险,材料的损伤会导致太阳电池组件电性能的下降。鉴于以上结果,作者建议在今后LEO长寿命航天器太阳电池阵研制中,应对原子氧环境条件进行详细设计;同时开展组件级试验,以对电池阵原子氧防护设计的有效性进行验证。  相似文献   

8.
航天器低频电缆网的设计   总被引:4,自引:3,他引:1  
文章提出了航天器低频电缆网的设计原则,以某航天器低频电缆网的设计为例,详细介绍了该低频电缆网功能的实现方法;整理归纳了地面测试阶段,航天器低频电缆网对航天器火工品、太阳电池阵驱动机构、蓄电池组等的安全保护措施。经航天器初样阶段验证,该低频电缆网设计合理可行,完全满足航天器任务要求。  相似文献   

9.
太阳翼展开锁定最大冲击载荷修正方法   总被引:1,自引:1,他引:1  
太阳翼展开锁定过程产生的锁定冲击载荷是卫星设计的重要指标,太阳翼设计时一般通过地面试验或仿真对该载荷进行估计。文章提出一种对太阳翼展开锁定过程最大锁定冲击载荷的修正方法。此方法在试验或仿真得出的载荷-时间曲线的基础上,参考模态分析结果或载荷曲线的频率分布情况,按频段分解,调整相位后再进行叠加,得到修正后的可能最大载荷。...  相似文献   

10.
文章分析了一些卫星的太阳电池阵运输数据,结果表明:空中运输和铁路运输的环境优于公路运输环境;运输振动响应主要为低频振动且量级较小,其水平向振动响应明显小于竖直向响应;运输振动响应受路况和车速影响较大;不同减振器的隔振效果不尽相同;太阳电池阵单独运输和装星运输的振动响应量级基本相当。经可靠性分析,运输不会对太阳电池阵产生疲劳损伤。  相似文献   

11.
卫星太阳电池阵的在轨特性主要受太阳入射角、地日距离因子、温度、星体遮挡、地球反照和衰减因素的影响。文章利用某太阳同步轨道卫星在轨数据,分析得出太阳电池阵输出功率的变化规律,并利用归一化处理方法,得出地球反照、星体遮挡、衰减因素对太阳电池阵输出功率的影响规律。文章的研究成果也适用于其他太阳同步轨道卫星,可为后续同类太阳电池阵的优化设计提供参考。  相似文献   

12.
SSETO is the result of a phase-A study in context of the small satellite program of the University of Stuttgart that demonstrates the capability of a university institute to build a small satellite with a budget of 5 million Euro. The satellite will be capable of observing exoplanets in a Neptune–Earth scale and obtaining data of interstellar dust. Due to a system failure of NASA?s Kepler mission, there is currently (October 2013) a lack of satellites searching for exoplanets. This paper details the design of subsystems and payload, as well as the required test tasks in accordance with the mission profile at a conceptional level. The costs for standard spacecraft testing and integration tasks are included, but not those of launch, ground support, operations and engineer working hours.  相似文献   

13.
In the early to mid-2000s, NASA made substantial progress in the development of solar sail propulsion systems. Solar sail propulsion uses the solar radiation pressure exerted by the momentum transfer of reflected photons to generate a net force on a spacecraft. To date, solar sail propulsion systems were designed for large robotic spacecraft. Recently, however, NASA has been investigating the application of solar sails for small satellite propulsion. The NanoSail-D is a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare is ready for flight and a suitable launch arrangement is being actively pursued. This paper will present an introduction solar sail propulsion systems and an overview of the NanoSail-D spacecraft.  相似文献   

14.
“资源一号”卫星火工控制系统设计的正确性、合理性和可靠性、安全性,与卫星成败有着非常密切的联系。文章重点描述了“资源一号”卫星火工控制系统可靠性安全性的设计,主要包括火工控制系统的点火电路设计、点火通路电缆设计、太阳电池板(文中简称太阳翼)可靠展开的冗余设计和点火限流电阻的设计等4方面内容,尤其在点火限流电阻的选取和设计方面进行了完善和提高。  相似文献   

15.
分析了基于小卫星平台的太阳电池阵的设计指标要求,阐述了设计原则,并以我国的环境减灾-1A、1B卫星太阳电池阵为例,从模块化、高效化、轻型化、小型化、太阳电池电路布局优化、太阳电池阵空间环境适应性等方面,介绍了基于小卫星平台太阳电池阵的设计方案,还简要介绍了基于小卫星平台太阳电池阵的应用情况。  相似文献   

16.
空间太阳能电站的准对日定向姿态   总被引:1,自引:0,他引:1       下载免费PDF全文
针对空间太阳能电站的俯仰姿态运动,提出一种能追踪太阳运动的准对日定向(QSP)姿态方案。此方案的太阳能电池阵列在万有引力梯度力矩的作用下,始终在垂直于太阳光的方向附近作幅值约为18.8°的振动,且几乎不需要姿态控制力矩。准对日定向姿态方案解决了大型太阳能电池阵列对日定向所需的巨大俯仰姿态控制力矩问题。准对日定向姿态的发电效率为对日定向姿态的97.3%,对Abacus空间太阳能电站而言每年可节省燃料约36791 kg。通过数值方法得到了准对日定向姿态的精确初始条件。随后,设计了比例-微分控制器,保证了系统存在初始姿态误差的条件下收敛到准对日定向姿态。最后研究了轨道、姿态和结构振动对准对日定向姿态的影响,并发现准对日定向姿态下的结构振动幅值比对日定向姿态减小约40倍。  相似文献   

17.
Choosing the “right” satellite platform for a given market and mission requirements is a major investment decision for a satellite operator. With a variety of platforms available on the market from different manufacturers, and multiple offerings from the same manufacturer, the down-selection process can be quite involved. In addition, because data for on-obit failures and anomalies per platform is unavailable, incomplete, or fragmented, it is difficult to compare options and make an informed choice with respect to the critical attribute of field reliability of different platforms. In this work, we first survey a large number of geosynchronous satellite platforms by the major satellite manufacturers, and we provide a brief overview of their technical characteristics, timeline of introduction, and number of units launched. We then analyze an extensive database of satellite failures and anomalies, and develop for each platform a “health scorecard” that includes all the minor and major anomalies, and complete failures—that is failure events of different severities—observed on-orbit for each platform. We identify the subsystems that drive these failure events and how much each subsystem contributes to these events for each platform. In addition, we provide the percentage of units in each platform which have experienced failure events, and, after calculating the total number of years logged on-orbit by each platform, we compute its corresponding average failure and anomaly rate. We conclude this work with a preliminary comparative analysis of the health scorecards of different platforms.The concept of a “health scorecard” here introduced provides a useful snapshot of the failure and anomaly track record of a spacecraft platform on orbit. As such, it constitutes a useful and transparent benchmark that can be used by satellite operators to inform their acquisition choices (“inform” not “base” as other considerations are factored in when comparing different spacecraft platforms), and by satellite manufacturers to guide their testing and reliability improvement programs. Finally, it is important to keep in mind that these health scorecards should be considered dynamic documents to be updated on a regular basis if they are to remain accurate and relevant for comparative analysis purposes, as new information will impact their content.  相似文献   

18.
《Acta Astronautica》2009,64(11-12):1299-1304
Miniaturization techniques enable the realization of very small satellites with interesting capabilities in space science. The University of Würzburg contributed in the scope of the cubesat program with its own pico satellite UWE-1, which is in orbit since October 2005. Despite reliable and stable operation of the on-board data handling (OBDH) system during the UWE-1 mission, the successor UWE-2 will be equipped with a more sophisticated, modular and extensible OBDH system, which was designed to facilitate the further development of the UWE satellite platform. The OBDH system was designed for high reliability and stability, but with an easier extension capability. The modular structure of the new system thus supports potential transfer to other satellite platforms.  相似文献   

19.
An extensible on-board data handling software platform for pico satellites   总被引:1,自引:0,他引:1  
Marco Schmidt  Klaus Schilling   《Acta Astronautica》2008,63(11-12):1299-1304
Miniaturization techniques enable the realization of very small satellites with interesting capabilities in space science. The University of Würzburg contributed in the scope of the cubesat program with its own pico satellite UWE-1, which is in orbit since October 2005. Despite reliable and stable operation of the on-board data handling (OBDH) system during the UWE-1 mission, the successor UWE-2 will be equipped with a more sophisticated, modular and extensible OBDH system, which was designed to facilitate the further development of the UWE satellite platform. The OBDH system was designed for high reliability and stability, but with an easier extension capability. The modular structure of the new system thus supports potential transfer to other satellite platforms.  相似文献   

20.
This paper describes the results of the in-orbit performance testing of deployable and retractable umbrella and boom systems, which will be used as important subsystems of Boomerang/Tether satellites. The umbrella is one of the possible candidates of the aerodynamic braking system for boomerang satellite and the boom is also one of the possible candidates of relative position adjusting mechanism between center of mass and aerodynamic force center of the boomerang satellite and initial release/final recovery mechanism of the tethered satellite. For this technology verification, a small and inexpensive satellite, named DEBUT (Deployable Boom and Umbrella Test satellite), was developed in a short period of 1.5 years elapsing from the start of the detailed design until the launch of the mission. The lithium dry cell batteries were used as the primary power and functioned normally during 10 days mission lifetime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号