首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Investigated here is high-resolution imaging of targets in noisy or unfriendly radar environments through a simulation analysis of the ultrawideband (UWB) continuous-wave (CW) bandlimited random noise waveform. The linear FM chirp signal was selected as a benchmark radar waveform for comparison purposes. Simulation of the recovery of various types of target reflectivity functions (TRFs) for these waveforms were performed and analyzed. In addition, electronic counter-countermeasure (ECCM) capabilities for both types of systems were investigated. The results are compared using the error between the interference (jamming)-free recovered TRF and the recovered TRF under noisy conditions as a function of the signal-to-interference/jamming ratio (SIR/SJR). Our analysis shows that noise waveforms possess better jamming immunity (of the order of 5-10 dB improvement over the linear FM chirp) due to the unique radar correlation processing in the receiver.  相似文献   

2.
给出了一种基于DDS驱动PLL的频率综合器结构。该结构采用AD9854DDS芯片产生低频的参考信号,然后驱动锁相环和VCO产生X波段射频信号。实验和测量结果表明,该频率综合器具有较宽的工作带宽和较低的相位噪声,可以用来产生连续波、线性调频信号和频率捷变信号用于X波段雷达信号的仿真。  相似文献   

3.
This paper considers the detection of a sinusoidal or chirp signal imbedded in wideband FM interference (as might be generated by some types of active jamming), such that after pulse compression or other integration, the interference can be approximated by a sum of sinusoids of independent phase. The detection probability in such non-Gaussian noise is compared to that for Gaussian noise, with the Gaussian result approached, as required, in the limit that the number of sinusoids in the sum increases without bound. For detection using a comparison of the envelope with a threshold which yields a given false-alarm probability (CFAR detection), the detection probability is improved over the case of Gaussian noise, so that the usual approach basing the design on Gaussian noise would be conservative. Using a threshold determined from the envelope mean, the FM interference yields a lower false-alarm probability than for Gaussian noise, with detection probability only slightly degraded.  相似文献   

4.
A recommended form of the signal-to-noise equation that includes both internal and external system noise and signal/noise processing losses is discussed. The recommended form conforms to the internationally accepted definition of system operating noise factor but is extended to include signal/noise processing. The predetection signal-to-noise ratio (SNR) of a radar or communication system is proportional to the power gain of the transmit antenna and the directive gain of the receive antenna, and is inversely proportional to the operating noise factor of the receiving system. The operating noise factor is approximately equal to the product of the external noise factor and the signal/noise processing factor when the system is external noise limited, as is usually the case for over-the-horizon (OTH) radar.<>  相似文献   

5.
In synthetic aperture radar a large linear phased array is formed from the rapid movement of a single element through each position in the array. Storage and coherent combining of the successive radar echoes are central to the array-forming process. Optical processing is the most common technique because of the efficiency with which Fourier transformation may be accomplished with simple optics. Real-time operation, however, requires all-electronic processing, which is difficult to accomplish because of the huge quantity of data to be manipulated. Dynamic range compression by hard limiting may ease the problem by reducing the number of bits per frame. The effects of hard limiting are analyzed in this paper. It is shown that large targets simultaneously illuminated by the radar antenna will produce image targets or ghosts displaced in angle. Statistically homogeneous clutter will "linearize" the hard-limited receiver and suppress the ghosts without loss in contrast, as does thermal noise if it is larger than the target echoes. Pulse compression reduces the probability of images from prominent targets. Judicious choice of the pulse-compression waveform is a powerful tool for destroying coherent buildup of images from all large targets not in the same range resolution cell. Linear FM, the most common choice, unfortunately does not exhibit this desirable property.  相似文献   

6.
Coherent high-resolution synthetic-aperture radar systems achieve their range resolution by pulse compression and azimuth resolution by compression of naturally generated FM coding due to Doppler shifts as the aircraft flies by the target. If the data is left unprocessed, it is, in effect, a defocused map of the terrain. As such, it should exhibit less dynamic range than if the data is compressed. This paper describes an experimental study to verify the above conjecture. The results of this study indicate that if dynamic range of the data link is a problem, the radar data should be transmitted in its unprocessed form. This might very well be the case for planetary mapping by means of satellites.  相似文献   

7.
This paper describes the principle and the signal design of a proposed new FM radar system. In order to measure the surface characteristics of a small target at a long distance, or to discriminate among multiple targets, very accurate range or Doppler resolutions are necessary [1]. The proposed system satisfies the range resolution requirement by detecting the target with two different resolutions: coarse resolution for measuring range, and fine resolution for measuring the target details. The principal advantage of the system is in the vernier scale for the measurement of a distance. The system is just as easily realizable as conventional FM radar, requires no special filters in the receiver, and represents a saving in the required bandwidth for the same range resolution.  相似文献   

8.
A new test method to measure the amplitude noise and phase noise in both CW and pulsed CW signals of a Ku-band pulsed Doppler radar is described. These noises are measured in a simulated environment of radar operation; thus the test results may give direct information to determine radar subclutter visibility. In comparison with the conventional noise test method, this new method not only gives more meaningful results but also can obtain results much faster in testing. Actual test system design is described by block diagrams and theoretical analysis. A method to determine approximate frequency jitter in a transmitter signal is also described.  相似文献   

9.
A technique for performing altimetric functions (and possibly very-low-resolution imaging radar) without the transmission of a signal is suggested. The system could benefit an invasive aerospace platform that needs to remain totally electronically silent. The concept uses naturally occurring galactic noise as the illumination signal. A rapid and low-cost processor is also suggested. The results developed are also useful for the particular case of low probability of intercept (LPI) radar in which the transmitter emits a broadband Gaussian-like signal and the receivers cannot locally generate the transmitted reference. Another derivation of the arcsine law is provided along with a measure of its efficiency compared with an optimal receiver  相似文献   

10.
A coherent train of identical linear FM (LFM) pulses is used extensively in radar because of its good range and Doppler resolution. Its relatively high autocorrelation function (ACF) sidelobes are sometimes reduced through spectrum shaping (e.g., nonlinear FM, or intrapulse weighting on receive). We show how to completely remove most of the ACF sidelobes about the mainlobe peak, without any increase to the mainlobe width, by diversifying the pulses through overlaying them with orthonormal coding. A helpful byproduct of this design is reduced ACF recurrent lobes. The overlaid signal also results in reduced Doppler tolerance, which can be considered as a drawback for some applications. The method is applied to several trains of identical pulses (LFM and others) using several orthonormal codes. The effect on the three important properties of the radar signal: ACF, ambiguity function (AY), and frequency spectrum is presented. The effect on Doppler tolerance is studied, and implementation issues are discussed. The new design is also compared with complementary and sub-complementary pulse trains and is shown to be superior in many aspects.  相似文献   

11.
A three-state Kalman tracker is described for tracking a moving target, such as an aircraft, making use of the position and rate measurements obtained by a track-white-scan radar sensor which employs pulsed Doppler processing, such as the moving target detector providing unambiguous Doppler data. The steady-state filter parameters have been analytically obtained under the assumption of white noise maneuver capability. The numerical computations of these parameters are in excellent agreement with those obtained from the recursive Kalman filter matrix equations. The solution for the case when only the range measurements are available is obtained as a special case of this model. Graphs of normalized covariances and gains are presented to illustrate how the solution depends on different parameters  相似文献   

12.
Information matrices are derived for estimates of the range parameters of moving targets as obtained by combining a priori information (if available) with reflected radar signals observed in the presence of additive white Gaussian noise. The inverse of the information matrix provides a lower bound on the covariance matrix of any unbiased parameter estimates. This bound can be approached with a high signal-to-noise ratio and optimum data processing (matched filters). Arbitrary frequency modulation, amplitude modulation, and target motion as well as various assumptions on processing the RF phase are considered. The multiple-target case makes possible investigation of a signal's resolution ability, as well as its accuracy potentials. Results for a carrier frequency much greater than the effective signal bandwidth are obtained as a special case. A main purpose of the paper is the reduction of the original radar problem to a linear model which is equivalent in the sense of having the same information matrix. These models provide valuable insight into the relative effects of multiple targets, choice of modulation, a priori information, and assumptions regarding RF phase and bandwidth. The linear equivalent model also leads to a valuable computational algorithm for investigations using digital or hybrid computers. The various special cases of interest are obtained by simple modifications of the general case, and thus the algorithm can provide a very versatile tool for evaluating and designing radar signals.  相似文献   

13.
Radio interference generated in a helicopter-borne continuous wave (CW) Doppler radar system due to the rotating blades is analyzed. This problem has been previously treated for the case of pulse Doppler radar systems with very narrow (near zero) beamwidth. In this case the strong interference component returning directly from the blades (with no ground reflection) need not be considered as it reaches the receiver when it is still blinded. In the case of a CW Doppler radar, however, this interference component must be included. Numerical calculations show that the total blade interference power level, dominated by the direct component, is higher than that of the direct ground clutter in the radar clutter region. It decreases approximately as (f - fo)-4 in the radar clear region. It stays, however, well above the thermal noise level which might cause false alarm and degrade the radar performance.  相似文献   

14.
A technique for generation of a large spectral bandwidth wave form is described which, when utilized as a dispersive delay line excitation signal, provides an efficient means for generation of large-percentage-bandwidth linear FM radar transmit pulses.  相似文献   

15.
This paper provides general models of radar echoes from a target. The rationale of the approach is to consider the echoes as the output of a linear dynamic system driven by white Gaussian noise (WGN). Two models can be conceived to generate N target returns: samples generated as a batch, or sequentially generated one by one. The models allow the accommodation of any correlation between pulses and nonstationary behavior of the target. The problem of deriving the optimum receiver structure is next considered. The theory of "estimator-correlator" receiver is applied to the case of a Gaussian-distributed time-correlated target embedded in clutter and thermal noise. Two equivalent detection schemes are obtained (i. e., the batch detector and the recursive detector) which are related to the above mentioned procedures of generating radar echoes. A combined analytic-numeric method has been conceived to obtain a set of original detection curves related to operational cases of interest. Finally, an adaptive implementation of the proposed processor is suggested, especially with reference to the problem of on-line estimation of the clutter covariance matrix and of the CFAR threshold. In both cases detection loss due to adaptation has been evaluated by means of a Monte Carlo simulation approach. In summary, the original contributions of the paper lie in the mathematical formulation of a powerful model for radar echoes and in the derivation of a large set of detection curves.  相似文献   

16.
Nonparametric Radar Extraction Using a Generalized Sign Test   总被引:3,自引:0,他引:3  
A nonparametric procedure used in a constant false alarm rate (CFAR) radar extractor for detecting targets in a background of noise with unknown statistical properties is described. The detector is based on a generalization of the well-known two-sample sign test and thus requires a set of reference noise observations in addition to the set of observations being tested for signal presence. The detection performance against Gaussian noise is determined for a finite number of observations and asymptotically, for both nonfluctuating and pulse-to-pulse Rayleigh fluctuating target statistics. It is noted that the performance loss, as compared to the optimum parametric detector, depends critically on the number of reference noise observations available when the number of hits per target is not large. In the same case a much larger loss is also found for a pulse-to-pulse fluctuating target even though the asymptotic loss is the same as for a nonfluctuating target. A comparison is finally made with a detector based on the Mann-Whitney test, which usually is considered to be one of the better nonparametric procedures for the two-sample case.  相似文献   

17.
A new method of reducing target glint errors in radar systems is presented. The target is modeled as n reflectors whose magnitudes and phases are known. The reflector positions are described by a dynamical model driven by white Gaussian noise. The resulting vibrations of the target reflectors produce glintlike pointing errors in the radar system. An extended Kalman filter is developed to estimate the positions of the target reflectors; this information is used to substantially reduce the pointing error due to glint. Data illustrating this glint reduction is given. The model is extended by the inclusion of clutter effects modeled in the same fashion as the glint phenomenon. The results presented indicate the limits of usefulness of this technique as a function of both receiver noise and relative clutter amplitude.  相似文献   

18.
A chirp scaling approach for processing squint mode SAR data   总被引:5,自引:0,他引:5  
Image formation from squint mode synthetic aperture radar (SAR) is limited by image degradations caused by neglecting the range-variant filtering required by secondary range compression (SRC). Introduced here is a nonlinear FM chirp scaling, an extension of the chirp scaling algorithm, as an efficient and accurate approach to range variant SRC. Two methods of implementing the approach are described. The nonlinear FM filtering method is more accurate but adds a filtering step to the chirp scaling algorithm, although the extra computation is less than that of a time domain residual compression filter. The nonlinear FM pulse method consists of changing the phase modulation of the transmitted pulse, thus avoiding an increase in computation. Simulations show both methods significantly improve resolution width and sidelobe level, compared with existing SAR processors for squint angles above 10 deg for L-band and 20 deg for C-band  相似文献   

19.
A technique for receiving radar pulse trains is presented [which can be of a variable format in the sense that they vary from pulse to pulse]. The heart of the receiver is a sufrace ascoustic wave (SAW) convolver. In addition to prsenting experimental results for variable format waveform reception, it is shown that the convolver can easily generate ambiguity functions for virtually any waveform, and specific results for signals such as Barker codes and linear FM (chirp) waveforms are presented.  相似文献   

20.
The ratio of radar jamming noise power to radar thermal noise power (J/N) is examined in a multiple noise jammer environment where jammer distances and energy levels vary. A simpler form of the computation of J/N is shown for several practical multiple noise jammer configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号