首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
2.
This paper reviews the principal results of direct measurements of the plasma and magnetic field by spacecraft close to the Earth (within the heliocentric distance range 0.7–1.5 AU). The paper gives an interpretation of the results for periods of decrease, minimum and increase of the solar activity. The following problems are discussed: the interplanetary plasma (chemical composition, density, solar wind flow speed, temperature, temporal and spatial variation of these parameters), the interplanetary magnetic field (intensity, direction, fluctuations and its origin), some derived parameters characterizing the physical condition of the interplanetary medium; the quasi-stationary sector structure and its connection with solar and terrestrial phenomena; the magnetohydrodynamic discontinuities in the interplanetary medium (tangential discontinuities and collisionless shock waves); the solar magnetoplasma interaction with the geomagnetic field (the collisionless bow shock wave, the magnetosheath, the magnetopause, the Earth's magnetic tail, the internal magnetosphere characteristics), the connection between the geomagnetic activity and the interplanetary medium and magnetosphere parameters; peculiarities in behaviour of the interplanetary medium and magnetosphere during geomagnetic storms; energetic aspects of the geomagnetic storms.  相似文献   

3.
Polar auroras     
Conclusion We have reviewed the somewhat conflicting data which have accumulated on such a vast scale in recent years. It is now becoming clearer which studies are likely to produce significant results, and this in itself may be a very important consequence of the assimilation of accumulated data. We must however ask in conclusion: does the outer radiation belt exist during the polar aurora? If the interplanetary media or the solar wind, carry magnetic fields, then these fields can be of two kinds. Firstly, they may be magnetic lines of force dragged by the plasma from the Sun. Secondly, the interplanetary medium or the solar wind are capable of carrying closed magnetic lines of force which are not related to the Sun. When such fields approach the Earth, the high-latitude geomagnetic lines of force which previously passed through the equatorial plane on the boundary of the magnetosphere, may deform in such a way as to pass out of one geomagnetic poles, miss the equatorial plane, enter the interplanetary plasma, and after passing through a very considerable volume of this plasma reach the other geomagnetic pole. This will in effect amount to an attachment through the medium of magnetic lines of force of enormous regions of ionised interplanetary matter or of solar wind to the Earth's magnetosphere. As these extraneous magnetic fields depart from the Earth's neighbourhood, the original dipole field will be reestablished. Rapid variations in the configuration of the geomagnetic field will occur during the interaction. It is possible that energetic particles appear with a very high degree of probability on the boundary of the geomagnetic field during such deformations. If this is so, then the outer radiation belt is merely a temporary formation appearing during the quiet intervals between geomagnetic disturbances, and containing a small residue of energetic charged particles, which exist during the polar auroras but do not succeed in entering the lower atmosphere during this time. In this process the particles giving rise to the polar auroras originate in the plasma of the solar corpuscular streams flowing past the Earth.Under the action of a solar wind the geomagnetic field is compressed at the front and elongated at the rear. This resembles the original Chapman theory of geomagnetic storms more closely than any other theory. Since the elongated geomagnetic field on the night side of the Earth is of a lower intensity, it may be associated with the magnetic fields brought in by the incident medium right down to very great depths. This may be responsible for the observed displacement at the zone of the polar auroras towards lower geomagnetic latitudes at night.Translated by the Express Translation Servies, Wimbledon, London.  相似文献   

4.
The solar wind evolves as it moves outward due to interactions with both itself and with the circum-heliospheric interstellar medium. The speed is, on average, constant out to 30 AU, then starts a slow decrease due to the pickup of interstellar neutrals. These neutrals reduce the solar wind speed by about 20% before the termination shock (TS). The pickup ions heat the thermal plasma so that the solar wind temperature increases outside 20–30 AU. Solar cycle effects are important; the solar wind pressure changes by a factor of 2 over a solar cycle and the structure of the solar wind is modified by interplanetary coronal mass ejections (ICMEs) near solar maximum. The first direct evidences of the TS were the observations of streaming energetic particles by both Voyagers 1 and 2 beginning about 2 years before their respective TS crossings. The second evidence was a slowdown in solar wind speed commencing 80 days before Voyager 2 crossed the TS. The TS was a weak, quasi-perpendicular shock which transferred the solar wind flow energy mainly to the pickup ions. The heliosheath has large fluctuations in the plasma and magnetic field on time scales of minutes to days.  相似文献   

5.
The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.  相似文献   

6.
It is only within the last 5 years that we have learned how to recognize the unambiguous signature of magnetic reconnection in the solar wind in the form of roughly Alfvénic accelerated plasma flows embedded within bifurcated magnetic field reversal regions (current sheets). This paper provides a brief overview of what has since been learned about reconnection in the solar wind from both single and multi-spacecraft observations of these so-called reconnection exhausts.  相似文献   

7.
The solar wind environment has a large influence on the transport of cosmic rays. This chapter discusses the observations of the solar wind plasma and magnetic field in the outer heliosphere and the heliosheath. In the supersonic solar wind, interaction regions with large magnetic fields form barriers to cosmic ray transport. This effect, the “CR-B” relationship, has been quantified and is shown to be valid everywhere inside the termination shock (TS). In the heliosheath, this relationship breaks down, perhaps because of a change in the nature of the turbulence. Turbulence is compressive in the heliosheath, whereas it was non-compressive in the solar wind. The plasma pressure in the outer heliosphere is dominated by the pickup ions which gain most of the flow energy at the TS. The heliosheath plasma and magnetic field are highly variable on scales as small as ten minutes. The plasma flow turns away from the nose roughly as predicted, but the radial speeds at Voyager 1 are much less than those at Voyager 2, which is not understood. Despite predictions to the contrary, magnetic reconnection is not an important process in the inner heliosheath with only one observed occurrence to date.  相似文献   

8.
Two ideas were advanced for the process of solar wind-magnetospheric interaction in the same year 1961. Dungey suggested that the interplanetary magnetic field (IMF), although weak, might determine the nature of this process by magnetic reconnection as the solar wind plasma flows across the separatrix surface which divides the IMF from the geomagnetic field. Axford and Hines pointed out that the flow inside the magnetopause is in the same sense as the magnetosheath flow and appears to be viscously coupled. Within a few years the dependence of geomagnetic activity on the IMF predicted by Dungey's mechanism was observed, and reconnection began to dominate current theories. One difficulty, that of the implied dissipation at the magnetopause, was troublesome; however, the ISEE-1/2 observations of the predicted high speed flows on several occasions was enough to convince many persons that reconnection ideas were basically correct. Several investigators found some evidence in the ISEE-3 data in the distant magnetotail for the steady-state reconnection line, as demanded by the Dungey model, in the form of a southward sense of the magnetic field through the current sheet. Here, again, there is some hard contrary evidence when the data are analyzed exactly at the cross-tail current sheet: the instantaneous values show a northward sense, even at high values of auroral activity. Coupled with the anti-Sunward plasma flow, this repudiates the steady-state Dungey model. On the other hand, it lends strong support to some kind of viscous effect through the medium of the magnetospheric boundary layer. This is not a semantic problem, as the sense of the electric field (as well as the magnetic field) is opposite for the two cases. The downfall of the reconnection model is its implicit use of frozen-field convection; this problem is obvious when the problem is viewed in three dimensions. Instead, the view is taken that the relevant process must be essentially time-dependent, three-dimensional, and localized. It is proposed that the term merging be used for this generalized timedependent form of reconnection. The merging process (whatever it is) must permit solar wind plasma to cross the magnetopause onto closed field lines of the boundary layer. Once it is there, it provides the viscous-like effect that Axford and Hines had envisaged.  相似文献   

9.
The coupling between the ionised plasma and the neutral thermospheric particles plays an important role for the dynamics of the upper atmosphere. Significant progress in understanding the related processes has been achieved thanks to the availability of continuous accurate measurements of thermospheric parameters like mass density and wind by high resolution accelerometers on board the satellites CHAMP and GRACE. Here we present some examples of ionosphere-thermosphere coupling where CHAMP observations contributed considerably to their interpretation. We start with the derived properties of the thermosphere at altitudes around 400 km. A new aspect is the significant control of the geomagnetic field geometry on thermospheric features. Phenomena discussed in some depths are the equatorial mass density anomaly, the cusp-related mass density enhancement and the thermospheric response to magnetospheric substorms. Here we consider both the effect on the density and on the wind. A?long predicted process is the wind-driven ionospheric F region dynamo. The high-resolution magnetic field measurements of CHAMP enabled for the first time a systematic study of that phenomenon considering longitudinal, local time, seasonal and solar flux dependences. Some open issues that require further investigations are mentioned at the end.  相似文献   

10.
The occurrence of waves generated by pick-up of planetary neutrals by the solar wind around unmagnetized planets is an important indicator for the composition and evolution of planetary atmospheres. For Venus and Mars, long-term observations of the upstream magnetic field are now available and proton cyclotron waves have been reported by several spacecraft. Observations of these left-hand polarized waves at the local proton cyclotron frequency in the spacecraft frame are reviewed for their specific properties, generation mechanisms and consequences for the planetary exosphere. Comparison of the reported observations leads to a similar general wave occurrence at both planets, at comparable locations with respect to the planet. However, the waves at Mars are observed more frequently and for long durations of several hours; the cyclotron wave properties are more pronounced, with larger amplitudes, stronger left-hand polarization and higher coherence than at Venus. The geometrical configuration of the interplanetary magnetic field with respect to the solar wind velocity and the relative density of upstream pick-up protons to the background plasma are important parameters for wave generation. At Venus, where the relative exospheric pick-up ion density is low, wave generation was found to mainly take place under stable and quasi-parallel conditions of the magnetic field and the solar wind velocity. This is in agreement with theory, which predicts fast wave growth from the ion/ion beam instability under quasi-parallel conditions already for low relative pick-up ion density. At Mars, where the relative exospheric pick-up ion density is higher, upstream wave generation may also take place under stable conditions when the solar wind velocity and magnetic field are quasi-perpendicular. At both planets, the altitudes where upstream proton cyclotron waves were observed (8 Venus and 11 Mars radii) are comparable in terms of the bow shock nose distance of the planet, i.e. in terms of the size of the solar wind-planetary atmosphere interaction region. In summary, the upstream proton cyclotron wave observations demonstrate the strong similarity in the interaction of the outer exosphere of these unmagnetized planets with the solar wind upstream of the planetary bow shock.  相似文献   

11.
The solar wind at Mars interacts with the extended atmosphere and small-scale crustal magnetic fields. This interaction shares elements with a variety of solar system bodies, and has direct bearing on studies of the long-term evolution of the Martian atmosphere, the structure of the upper atmosphere, and fundamental plasma processes. The magnetometer (MAG) and electron reflectometer (ER) on Mars Global Surveyor (MGS) continue to make many contributions toward understanding the plasma environment, thanks in large part to a spacecraft orbit that had low periapsis, had good coverage of the interaction region, and has been long-lived in its mapping orbit. The crustal magnetic fields discovered using MGS data perturb plasma boundaries on timescales associated with Mars' rotation and enable a complex magnetic field topology near the planet. Every portion of the plasma environment has been sampled by MGS, confirming previous measurements and making new discoveries in each region. The entire system is highly variable, and responds to changes in solar EUV flux, upstream pressure, IMF direction, and the orientation of Mars with respect to the Sun and solar wind flow. New insights from MGS should come from future analysis of new and existing data, as well as multi-spacecraft observations.  相似文献   

12.
We have developed a 2D semi-empirical model (Sittler and Guhathakurta 1999) of the corona and the interplanetary medium using the time independent MHD equations and assuming azimuthal symmetry, utilizing the SOHO, Spartan and Ulysses observations. The model uses as inputs (1) an empirically derived global electron density distribution using LASCO, Mark III and Spartan white light observations and in situ observations of the Ulysses spacecraft, and (2) an empirical model of the coronal magnetic field topology using SOHO/LASCO and EIT observations. The model requires an estimate of solar wind velocity as a function of latitude at 1 AU and the radial component of the magnetic field at 1 AU, for which we use Ulysses plasma and magnetic field data results respectively. The model makes estimates as a function of radial distance and latitude of various fluid parameters of the plasma such as flow velocity V, temperature Teff, and heat flux Qeff which are derived from the equations of conservation of mass, momentum and energy, respectively, in the rotating frame of the Sun. The term "effective" indicates possible wave contributions. The model can be used as a planning tool for such missions as Solar Probe and provide an empirical framework for theoretical models of the solar corona and solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The concept of geomagnetic storm-producing solar plasma flows has evolved and advanced considerably over the last 100 years or so. This particular field of study began in an effort to understand geomagnetic disturbances and the aurora. The purpose of this paper is try to follow the ways in which early concepts evolved to later ones, not to review each concept in detail. It is fascinating to see a step-by-step buildup of these concepts, from the earliest idea of flow of solar electrons to coronal mass ejections (CMEs). The time line, though tentative, of the studies of geomagnetic storm-producing plasma flows is presented. The author hopes that this paper will serve young researchers in particular to consider how they plan to advance further this scientific field. There is still much uncertainty about geomagnetic storm-producing solar plasma flows. Some of the major questions are listed from the point of view of a geophysicist in the summary sections by grouping them in terms of the quiet-time solar wind, solar streams from corona holes and CMEs associated with solar flares.  相似文献   

14.
The morphology of development of auroral flares (magnetospheric substorms) for both electron and proton auroras is summarized, based on ground-based as well as rocket-borne and satellite-borne data with specific reference to the morphology of solar flares.The growth phase of an auroral flare is produced by the inflow of the solar wind energy into the magnetosphere by the reconnection mechanism between the solar wind field and the geomagnetic field, thus the neutral and plasma sheets in the magnetotail attaining their minimum thickness with a great stretch of the geomagnetic fluxes into the tail.The onset of the expansion phase of an auroral flare is represented by the break-up of electron and proton auroras, which is associated with strong auroral electrojets, a sudden increase in CNA, VLF hiss emissions and characteristic ULF emissions. The auroral break-up is triggered by the relaxation of stretched magnetic fluxes caused by cutting off of the tail fluxes at successively formed X-type neutral lines in the magnetotail.The resultant field-aligned currents flowing between the tailward magnetosphere and the polar ionosphere produce the field-aligned anomalous resistivity owing to the electrostatic ion-cyclotron waves; the electrical potential drop thus increased further accelerates precipitating charged particles with a result of the intensification of both the field-aligned currents and the auroral electrojet. It seems that the rapid building-up of this positive feedback system for precipitating charged particles is responsible for the break-up of an auroral flare.  相似文献   

15.
A total of about of 400 orbits during the first year of the ASPERA-3 operation onboard the Mars Express spacecraft were analyzed to obtain a statistical pattern of the main plasma domains in the Martian space environment. The environment is controlled by the direct interaction between the solar wind and the planetary exosphere/ionosphere which results in the formation of the magnetospheric cavity. Ionospheric plasma was traced by the characteristic “spectral lines” of photoelectrons that make it possible to detect an ionospheric component even far from the planet. Plasma of solar wind and planetary origin was distinguished by the ion mass spectrometry. Several different regions, namely, boundary layer/mantle, plasma sheet, region with ionospheric photoelectrons, ray-like structures near the wake boundary were identified. Upstream parameters like solar wind ram pressure and the direction of the interplanetary electric field were inferred as proxy from the Mars Global Surveyor magnetic field data at a reference point of the magnetic pile up region in the northern dayside hemisphere. It is shown that morphology and dynamics of the main plasma domains and their boundaries are governed by these factors as well as by local crustal magnetizations which add complexity and variability to the plasma and magnetic field environment.  相似文献   

16.
There are three major types of solar wind: The steady fast wind originating on open magnetic field lines in coronal holes, the unsteady slow wind coming probably from the temporarily open streamer belt and the transient wind in the form of large coronal mass ejections. The majority of the models is concerned with the fast wind, which is, at least during solar minimum, the normal mode of the wind and most easily modeled by multi-fluid equations involving waves. The in-situ constraints imposed on the models, mainly by the Helios (in ecliptic) and Ulysses (high-latitude) interplanetary measurements, are extensively discussed with respect to fluid and kinetic properties of the wind. The recent SOHO observations have brought a wealth of new information about the boundary conditions for the wind in the inner solar corona and about the plasma conditions prevailing in the transition region and chromospheric sources of the wind plasma. These results are presented, and then some key questions and scientific issues are identified. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Historical data of the geomagnetic activity records in St. Petersburg since 1841 do not show any ‘doubling’ of the total magnetic field at the Sun as claimed recently by Lockwood et al. (1999). However, recurrent patterns of the geomagnetic activity variations display ‘secular’ trend of the solar wind near ecliptic plane resulting from gradual change of the topological structure of the solar corona (Ponyavin, 1997). By comparing geomagnetic and eclipse observations we found ‘typical’ coronal shapes, which correspond better to periods of extremely low and high geomagnetic activity level rather than standard sunspot activity referencing as ‘Corona at Solar Maximum or Minimum’. Using geomagnetic records as proxies it has been suggested that the maximum of the sunspot activity was in July 2000. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
We examine the magnetic field in the martian magnetosheath due to solar wind draping. Mars Global Surveyor provided 3-D vector magnetic field measurements at a large range of altitudes, local times, and solar zenith angles as the spacecraft orbit evolved. We choose orbits with very clean signatures of draping to establish the nominal morphology of the magnetic field lines at local times of near-subsolar and near-terminator. Next, using a compilation of data from Mars Global Surveyor, we determine the average magnetic field morphology in the martian magnetosheath due to the solar wind interaction. The topology of the field is as expected from previous observations and predictions. The magnetic field magnitude peaks at low altitude and noon magnetic local time and decreases away from that point. The magnetic field has an inclination from the local horizontal of 5.6° on average in the dayside magnetosheath and 12.5° on the nightside. The inclination angle is closest to zero at noon magnetic local time and low altitude. It increases both upward and to later local times. The magnetic field in the induced magnetotail flares out from the Mars—Sun direction by 21°. Finally, we compare the observations to gasdynamic model predictions and find that the shocked solar wind flow in the martian magnetosheath can be treated as a gasdynamic flow with the magnetic pileup boundary as the inner boundary to the flow.  相似文献   

19.
Corotating Interaction Regions (CIRs) form as a consequence of the compression of the solar wind at the interface between fast speed streams and slow streams. Dynamic interaction of solar wind streams is a general feature of the heliospheric medium; when the sources of the solar wind streams are relatively stable, the interaction regions form a pattern which corotates with the Sun. The regions of origin of the high speed solar wind streams have been clearly identified as the coronal holes with their open magnetic field structures. The origin of the slow speed solar wind is less clear; slow streams may well originate from a range of coronal configurations adjacent to, or above magnetically closed structures. This article addresses the coronal origin of the stable pattern of solar wind streams which leads to the formation of CIRs. In particular, coronal models based on photospheric measurements are reviewed; we also examine the observations of kinematic and compositional solar wind features at 1 AU, their appearance in the stream interfaces (SIs) of CIRs, and their relationship to the structure of the solar surface and the inner corona; finally we summarise the Helios observations in the inner heliosphere of CIRs and their precursors to give a link between the optical observations on their solar origin and the in-situ plasma observations at 1 AU after their formation. The most important question that remains to be answered concerning the solar origin of CIRs is related to the origin and morphology of the slow solar wind. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The large-scale coronal magnetic fields of the Sun are believed to play an important role in organizing the coronal plasma and channeling the high and low speed solar wind along the open magnetic field lines of the polar coronal holes and the rapidly diverging field lines close to the current sheet regions, as has been observed by the instruments aboard the Ulysses spacecraft from March 1992 to March 1997. We have performed a study of this phenomena within the framework of a semi-empirical model of the coronal expansion and solar wind using Spartan, SOHO, and Ulysses observations during the quiescent phase of the solar cycle. Key to this understanding is the demonstration that the white light coronagraph data can be used to trace out the topology of the coronal magnetic field and then using the Ulysses data to fix the strength of the surface magnetic field of the Sun. As a consequence, it is possible to utilize this semi-empirical model with remote sensing observation of the shape and density of the solar corona and in situ data of magnetic field and mass flux to predict values of the solar wind at all latitudes through out the solar system. We have applied this technique to the observations of Spartan 201-05 on 1–2 November, 1998, SOHO and Ulysses during the rising phase of this solar cycle and speculate on what solar wind velocities Ulysses will observe during its polar passes over the south and the north poles during September of 2000 and 2001. In order to do this the model has been generalized to include multiple streamer belts and co-located current sheets. The model shows some interesting new results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号