首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The space elevator will operate in near-Earth space, under the attraction of the Earth, the Moon and the Sun. It will have to avoid collisions with active satellites, with space debris and with meteoroids, not counting other minor adverse phenomena. The exceedingly long cable cannot be a passive and limp body. It must be an active part of the elevator, withstanding lunisolar and other perturbations threatening its stability. The cable must have sensors and thrusters at appropriate locations along the cable. Sensors would serve for detection of objects on a collision course and thrusters for station-keeping and for initiating evasive manoeuvres. Adaptive control must be used for that purpose. Extensive series of numerical simulations will have to be performed to ascertain that the elevator is stable and that possible oscillations do not interfere with the main function of the elevator.  相似文献   

2.
简要介绍了天梯系统的组成和初始部署形式。在此基础上,针对天梯初始部署和运行中存在的复杂动力学与控制问题,分别从天梯动力学建模、天梯稳定性、天梯绳索振荡、攀爬器运动引起的绳索振荡及振荡抑制、天梯初始部署动力学五个方面分析归纳了天梯动力学与控制的发展状况,最后对天梯动力学与控制的发展方向进行了总结及展望。  相似文献   

3.
Why we need a space elevator   总被引:2,自引:1,他引:1  
The goals of and vision for development of a space elevator have been discussed repeatedly. However, why we should develop one has been glossed over. This paper will focus upon the major issue—why build a space elevator infrastructure? It considers why we need a space elevator, what missions it would enable and how far it would reduce costs. There is no doubt that some major missions would be enhanced or significantly enabled by a space elevator infrastructure. Global communications, energy, monitoring of the Earth, global/national security, planetary defense, and exploration beyond low-Earth orbit are a few examples. In the end, if we are serious about extending space development and avoiding limitations on the human spirit, the reason we should build a space elevator is because we must!  相似文献   

4.
The space elevator in the context of current space exploration policy   总被引:2,自引:1,他引:1  
Mark S. Avnet 《Space Policy》2006,22(2):133-139
The space elevator is an advanced space transportation system that someday could replace chemical rockets as humanity's primary means of reaching Earth's orbit. However, before this can occur, a number of enabling technologies will need to be developed, and a variety of economic and policy questions must be addressed. The goal of this paper is to examine the feasibility of the space elevator in the context of current space exploration policy. The paper reviews the space elevator's critical enabling technologies and presents their wide variety of applications. The challenges of funding the space elevator and of building support for the program are discussed. The potential for international cooperation is considered, and the role of the space elevator in the Vision for Space Exploration is examined. The paper argues that each of the space elevator's component technologies ought to be developed independently to meet separate nearer-term objectives. The space elevator should be just one of many applications considered in making decisions to pursue research and development related to each component technology. The enabling technologies, once mature, might eventually be integrated in the construction of a full-scale space elevator from the Earth's surface to geosynchronous orbit and beyond.  相似文献   

5.
A space elevator has been proposed as an alternate method for launching satellites; however, the materials available now are not strong enough to support the stress generated in the structure. On the other hand, with the existing technology, a partial elevator is feasible. In this paper, the mechanics of a very long tethered system that functions as a partial elevator is studied. For such a system, the center of mass, center of gravity, and center of orbit are not coincident; disregarding this distinction can lead to erroneous results. A relation between these three points is presented in this paper. A consistent stress distribution along the tether is obtained by taking into account the distinction between these points. Dynamics of the system consisting of two end bodies, the tether (with mass), and a climber is examined. The equations of motion are derived using the Lagrangian formulation and analyzed numerically.  相似文献   

6.
The Marine Node for the Space Elevator Infrastructure is the base for all activities to load and unload the cargo and climbers. As the basic design of the space elevator power system is solar power only, the first 40 km is hazardous to operations and demands enclosed packaging of fragile tether climbers. A significant question is: how do we place a full-up tether climber, driven by solar power, above the atmosphere? Two approaches, starting at the Marine Node, allow the tether climber to initiate the climb with solar energy above the atmosphere. The third viable approach is to provide a platform at altitude for initiation of tether climb. These approaches would enable solar power to be the source of energy for climbing. The three approaches are:  相似文献   

7.
A string moving with geostationary angular velocity in its radial relative equilibrium configuration around the Earth, reaching from the surface of the Earth far beyond the geostationary height, could be used as track for an Earth to space elevator. This is an old dream of mankind, originating about 100 years ago in Russia. Besides the question of feasibility from a technological point of view also the question concerning the stability of such a configuration has not yet been completely solved. Under the assumption that a proper material (carbon nanotubes) is available, making the connection possible technologically, we address the question of existence and stability of the radial relative equilibrium of a tapered string on a circular geosynchronous trajectory around the Earth, reaching from the surface of the Earth far beyond the geostationary height.  相似文献   

8.
Nick Kanas 《Acta Astronautica》2011,68(5-6):576-581
Current planning for the first interplanetary expedition to Mars envisions a crew of 6 or 7 people and a mission duration of around 2.5 years. However, this time frame is much less than that expected on expeditions to the outer solar system, where total mission durations of 10 years or more are likely. Although future technological breakthroughs in propulsion systems and space vehicle construction may speed up transit times, for now we must realistically consider the psychological impact of missions lasting for one or more decades.Available information largely deals with on-orbit missions. In research that involved Mir and ISS missions lasting up to 7 months, our group and others have studied the effects of psychological and interpersonal issues on crewmembers and on the crew-ground relationship. We also studied the positive effects of being in space. However, human expeditions to the outer planets and beyond will introduce a number of new psychological and interpersonal stressors that have not been experienced before. There will be unprecedented levels of isolation and monotony, real-time communication with the Earth will not be possible, the crew will have to work autonomously, there will be great dependence on computers and other technical resources located on board, and the Earth will become an insignificant dot in space or will even disappear from view entirely.Strategies for dealing with psychological issues involving missions to the outer solar system and beyond will be considered and discussed, including those related to new technologies being considered for interstellar missions, such as traveling at a significant fraction of the speed of light, putting crewmembers in suspended animation, or creating giant self-contained generation ships of colonists who will not return to Earth.  相似文献   

9.
Engel KA 《Acta Astronautica》2005,57(2-8):277-287
The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.  相似文献   

10.
文章简略介绍太空梯的概念,概述了目前世界上太空梯系统的状况和研制遇到的普遍困难.由于现有的纳米技术和材料以及加工水平还不能满足缆绳式太空梯的要求,因此文章提出建造一种非柔性结构的太空梯的构想,这样的太空梯虽然运行效率不及缆绳式太空梯,但所要求的材料相对容易得到.  相似文献   

11.
《Acta Astronautica》1987,15(8):577-581
The future missions of the National Aeronautics and Space administration (NASA) directed at solar system exploration, astrophysical, planetary and Earth Sciences observations will require advanced capabilities for acquiring data from space platforms. For example, NASA's terrestrial observation program is confronted by a range of challenging and important new problems derived from advances in the Earth Sciences over the past twenty years. New observational approaches appear promising for solving older problems which will benefit meteorology, agriculture, mineralogy, and geodynamics. Furthermore, many of the problems which space observations may help to solve are inherently interdisciplinary of the above areas. Although much is known about the Earth, the unifying concepts are still to be established and remote sensing from space will continue to be a vital experimental tool.  相似文献   

12.
This paper presents a basic concept to derive an orbital control strategy to achieve the full deployment and the geostationary station keeping of a space elevator during its initial cable deployment. The space elevator model is composed of a main spacecraft, a sinker mass and a massive cable connecting them. The cable elasticity, flexibility and taper of the cross-sectional area are omitted for simplification. A reference trajectory is designed so that the space elevator and its center of mass ascend vertically along the geostationary position with keeping the geostationary orbital rate. From the reference trajectory analyses, an orbital control that leads the space elevator orbit to the reference one is derived. However it is found that the reference trajectory is unstable throughout the deployment and a linear feedback control is introduced for stabilization. It is also clarified that the libration destabilizes the orbital control because the orbital acceleration caused by the libration always acts in the opposite direction to the orbital control. Therefore, a libration control is also introduced to stabilize the coupled orbital and librational motions. Numerical simulation result clearly shows that these controls facilitate the full deployment and the geostationary station keeping of the space elevator within the feasible thrust force and amount of propellant.  相似文献   

13.
《Acta Astronautica》1999,44(2-4):109-112
One of the most important problem in the ecological area that stay for humanity is the problem of prevention Earth and asteroids collision. The danger of such collision isn't realized of the general public. But we know that on average twice in the every century the Earth comes into collision with the large celestial bodies (for example Tungussky or Arizonsky meteorites). The incidence of such meteorite in density population region of the Earth will simulate the ecumenical catastrophe. Much more seldom the Earth experiences collision with the particularly large celestial bodies. In accordance with one of the hypotheses namely the collision Earth with such body 65,000,000 years ago leads to the global change of Earth biosphere (in particular to the extinction of dinosaurs).Now we are able to stave off or at least to forewarn of this danger. One of the way for that is making the specific space station - asteroid patrol. Such the station will be able to track the approaching celestial bodies and perhaps (on second stage) to attempt altering its trajectory (for example with directional thermonuclear explosions)Some of the expedient points in the Space for the asteroid patrol's placing are the librations' points of the Earth - Moon system. In the report the preliminary results of analysis the problem of space station's taking into the libration's point are presented. For this taking it is suggested the electric jet propulsion to use.  相似文献   

14.
Most plausible futures for space exploration and exploitation require a large mass in Earth orbit. Delivering this mass requires overcoming the Earth's natural gravity well, which imposes a distinct obstacle to any future space venture. An alternative solution is to search for more accessible resources elsewhere. In particular, this paper examines the possibility of future utilisation of near Earth asteroid resources. The accessibility of asteroid material can be estimated by analysing the volume of Keplerian orbital element space from which Earth can be reached under a certain energy threshold and then by mapping this analysis onto an existing statistical near Earth objects (NEO) model. Earth is reached through orbital transfers defined by a series of impulsive manoeuvres and computed using the patched-conic approximation. The NEO model allows an estimation of the probability of finding an object that could be transferred with a given Δv budget. For the first time, a resource map provides a realistic assessment of the mass of material resources in near Earth space as a function of energy investment. The results show that there is a considerable mass of resources that can be accessed and exploited at relatively low levels of energy. More importantly, asteroid resources can be accessed with an entire spectrum of levels of energy, unlike other more massive bodies such as the Earth or Moon, which require a minimum energy threshold implicit in their gravity well. With this resource map, the total change of velocity required to capture an asteroid, or transfer its resources to Earth, can be estimated as a function of object size. Thus, realistic examples of asteroid resource utilisation can be provided.  相似文献   

15.
Evolving on Earth has made humans perfectly adapted, both physiologically and biomechanically, to its gravity and atmospheric conditions. Leaving the Earth and its protective environment, therefore, results in the degradation of a number of human systems. Long-duration stays on the International Space Station (ISS) are accompanied by significant effects on crew's cardiovascular, vestibular and musculoskeletal systems. Bone loss and muscle atrophy are experienced at a rate of 1-3% and 5% per month respectively, while VO2 (oxygen consumption) measurements are reduced by approximately 25% after a few weeks in space. If these figures are simply extrapolated, a future human mission to Mars will be seriously jeopardised and crews may find they cross the threshold of bone and muscle loss and aerobic fitness--ultimately with them being unable to return to Earth. When arriving on Mars, considerable biomechanical alterations will also occur. Optimum walking speeds will be approximately 30% lower and transitioning from a walk to a run will occur at a speed 25% slower. Peak vertical forces will be reduced by as much as 50%, while stride length, stride time and airborne time will all increase. On Mars, half as much energy will be required to travel the equivalent distance on Earth and it will be 65% more economical to run rather than to walk.  相似文献   

16.
With the prospect of long duration space missions in Earth orbit or to Mars, there is a need for adequate information on the physiological adaptations that will occur. One consequence of prolonged exposure to microgravity is muscle atrophy (loss of muscle mass). After a long duration space flight, muscle atrophy along with skeletal calcium loss would affect the capacity of astronauts to re-adapt to gravity on return to Earth. Of importance are any countermeasures which can attenuate the adaptive responses to microgravity. Experimentation is difficult in space with small subject numbers and mission constraints. Prolonged bed rest using healthy volunteers is used as an Earth-based model to simulate the muscle atrophy which occurs in the microgravity environment.  相似文献   

17.
Scott Pace   《Space Policy》2009,25(3):156-159
With space now crucial to such a wide range of activities on Earth, the USA must ensure the sustainability of its efforts, a task that involves technological feasibility and political will. Near-term challenges include US human access to space and the Shuttle transition, funding NASA sufficiently in a time of recession, and rebuilding the country's space industrial base. Longer-term challenges will be better protecting the space environment (including the electromagnetic spectrum) from overcrowding and the effects of space weather and NEOs, and defining responsibilities for distributing climate change data and recognition of property rights for the commercial development of in-space resources. As an aid to dealing with these challenges the USA must ask itself whether there is a human future in space and seek to answer the question in the course of human and robotic exploration beyond Earth.  相似文献   

18.
The use of oxygen produced on the Moon—called “MOONLOX”—is considered as a propellant component for a reusable Earth-Moon transportation system consisting of an aeroassisted orbital transfer vehicle and a lunar bus for lunar descent/ascent. Conditions for economic benefit are discussed and the processing concept of a lunar oxygen plant based on fluorination is presented. It is shown that the necessary mass of supply from Earth for MOONLOX-production is an important parameter, which may not be neglected due to its strong influence on the economy. In the ideal case where no supplies from Earth are required a reduction of up to 50% in masses to be launched into low Earth orbit can be obtained for a typical lunar mission with use of MOONLOX compared to a reference scenario with Earth-derived propellant. Mass-saving decreases, however, significantly with increasing supply from Earth until a critical supply-rate is reached—measured in percentage of MOONLOX-mass produced and consumed—beyond which mass-saving and thus economically promising lunar oxygen production is no longer possible. This critical supply-rate depends on the scenario for MOONLOX-utilization and is much larger in the case of in situ use of MOONLOX on the lunar surface, e.g. as ascent propellant for the lunar bus, than in the case of export for complete refuelling of both space vehicles. The latter scenario therefore requires significantly more autonomy for MOONLOX-production. The reduction of masses to be transported into low Earth orbit and corresponding MOONLOX-consumption define for given specific Earth-to-LEO transportation costs an upper limit on MOONLOX-production costs beyond which economic benefit is not possible. Depending on the MOONLOX-utilization strategy this upper limit varies between 3000 and 55000 $/kg for current Earth-to-LEO transportation costs.  相似文献   

19.
The links between Earth and space exploration occur across a broad spectrum, from the use of satellite technology to support environmental monitoring and habitat protection to the study of extreme environments on Earth to prepare for the exploration of other planets. Taking the view that Earth and space exploration are part of a mutually beneficial continuum is in contrast to the more traditionally segregated view of these areas of activity. In its most polarized manifestation, space exploration is regarded as a waste of money, distracting from solving problems here at home, while environmental research is seen to be introspective, distracting from expansive visions of exploring the frontier of space. The Earth and Space Foundation was established in 1994 to help further mutually beneficial links by funding innovative field projects around the world that work at the broad interface between environmental and space sciences, thus encouraging the two communities to work together to solve the challenges facing society. This paper describes the work of the foundation and the philosophy behind its programmes.  相似文献   

20.
The international community is entering an era of shared global utilities from space and is increasingly reliant on space systems and activities that support a myriad of applications and utilities on Earth. A growing number of states are seeking to develop or extend their space capabilities. At the same time, a variety of non-state actors are also extending their involvement in space activities. The United Nations is the principal inter-governmental forum to deal with various space issues of global importance. Moreover, the United Nations system itself has become increasingly reliant on space systems for its day-to-day operations. In order for the United Nations to play its necessary role in the space arena, it will need to be supported by a space policy. A United Nations space policy would provide over-arching guidance on space activities for UN stakeholders in the space arena; it would inform UN participation in space activities and would promote improved coordination and cooperative governance of outer space activities. A world without a common UN space policy will not be able to respond to the challenges of the rapidly evolving space arena in the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号