首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
The growth of the orbital debris population has been a concern to the international space community for several years. Recent studies have shown that the debris environment in Low Earth Orbit (LEO, defined as the region up to 2000 km altitude) has reached a point where the debris population will continue to increase even if all future launches are suspended. As the orbits of these objects often overlap the trajectories of satellites, debris create a potential collision risk. However, several studies show that about 5 objects per year should be removed in order to keep the future LEO environment stable. In this article, we propose a biobjective time dependent traveling salesman problem (BiTDTSP) model for the problem of optimally removing debris and use a branch and bound approach to deal with it.  相似文献   

2.
《Acta Astronautica》1999,44(7-12):313-321
The increase in the number of satellites in the Near Earth Orbit is exponential. The consequent increase in pollution of the orbital environment is of growing concern to the international community. There are currently only two observation systems available for measurement of orbital debris. Ground based radar and telescopes can detect objects larger than about 7 cm. Passive space based systems provide an accurate statistical estimation of flux for debris smaller than about 0.1 mm in size. Consequently, there is no way of obtaining information about debris in the millimeter-size range. Considering that the relative speed between objects in space is commonly in the km/s range, millimeter sized debris carry enough energy to be deadly to astronauts or to totally destroy the functioning of any satellite. Then National space agencies have recommended launching orbital spacecraft carrying debris detection experiments for gaining a better understanding of small debris.CNES (the French Space Agency) is developing a new family of micro-satellites, that will make possible to put into orbit a totally new system of radar that could measure in-situ flux of debris. We present results of this system analysis, which would cumulate the advantages of both ground-based radar and in orbit passive experiments.The proposed method for detection is quite original and allows the radar to act like a band-pass filter with respect to the debris diameter. The optimum frequency is shown to be in the Ka-band. Two points are critical in the definition of the radar: the average power available and the false alarm probability in the detection criterion. Therefore, we present a special receiver chain in order to optimize the signal-to-noise ratio. The estimate of the radial velocity through Doppler frequency measurement may be used to discriminate orbital debris from meteoroids. This system could be built today using an existing Continuous Wave amplifier. Several hundreds of objects per year could be detected yielding an accurate statistical estimation.The orbital debris radar would be a major contribution to our knowledge of millimeter sized debris. This experiment would contribute to making the current models more accurate at all inclinations. The micro-satellite concept would make the orbital debris radar mission cheap enough for considering a constellation of such satellites.  相似文献   

3.
Sensitivities to the future growth of orbital debris and the resulting hazard to operational satellites due to collisional breakups of large derelict objects are being studied extensively. However, little work has been done to quantify the technical and operational tradeoffs between options for minimizing future derelict fragmentations that act as the primary source for future debris hazard growth. The two general categories of debris mitigation examined for prevention of collisions involving large derelict objects (rocket bodies and payloads) are active debris removal (ADR) and just-in-time collision avoidance (JCA). Timing, cost, and effectiveness are compared for ADR and JCA solutions highlighting the required enhancements in uncooperative element set accuracy, rapid ballistic launch, despin/grappling systems, removal technologies, and remote impulsive devices. The primary metrics are (1) the number of derelict objects moved/removed per the number of catastrophic collisions prevented and (2) cost per collision event prevented. A response strategy that contains five different activities, including selective JCA and ADR, is proposed as the best approach going forward.  相似文献   

4.
It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity?s access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today?s restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these challenges and propose an economically, politically, and legally viable ADR option. Much like waste management on Earth, cleaning up space junk will likely lie somewhere between a public good and a private sector service. An international, cooperative, public-private partnership concept can address many of these issues and be economically sustainable, while also driving the creation of a proper set of regulations, standards and best practices.  相似文献   

5.
This paper analyzes an example of a three-dimensional constellation of debris removal satellites and proposes an effective constellation using a delta-V analysis that discusses the advisability of rendezvousing satellites with space debris. Lambert?s Equation was used to establish a means of analysis to construct a constellation of debris removal satellites, which has a limit of delta-V injection by evaluating the amount of space debris that can be rendezvoused by a certain number of removal satellite. Consequently, we determine a constellation of up to 38 removal satellites for debris removal, where the number of space debris rendezvoused by a single removal satellite is not more than 25, removing up to 584 pieces of debris total. Even if we prepare 38 removal satellites in their respective orbits, it is impossible to remove all of the space debris. Although many removal satellites, over 100 for example, can remove most of the space debris, this method is economically disproportionate. However, we can also see the removal satellites are distributed nearly evenly. Accordingly, we propose a practical two-stage strategy. The first stage is to implement emergent debris removal with the 38 removal satellites. When we find a very high probability of collision between a working satellite and space debris, one of the removal satellites in the constellation previously constructed in orbit initiates a maneuver of emergent debris removal. The second stage is a long-term space debris removal strategy to suppress the increase of space debris derived from collisions among the pieces of space debris. The constellation analyzed in this paper, which consists of the first 38 removal satellites, can remove half of the over 1000 dangerous space debris among others, and then the constellation increases the number of the following removal satellites in steps. At any rate, an adequate orbital configuration and constellation form is very important for both space debris removal and economic efficiency. Though the size of constellation of debris removal satellites would be small originally, such a constellation of satellites should be one of the initial constellations of removal satellites to ensure the safety of the future orbital environment.  相似文献   

6.
Smirnov  N.N.  Nazarenko  A.I.  Kiselev  A.B. 《Space Debris》2000,2(4):249-271
The paper discusses the mathematical modeling of long-term orbital debris evolution taking into account mutual collisions of space debris particles of different sizes. Investigations and long-term forecasts of orbital debris environment evolution in low Earth orbits are essential for future space mission hazard evaluation and for adopting rational space policies and mitigation measures. The paper introduces a new approach to space debris evolution mathematical modeling based on continuum mechanics incorporating partial differential equations. This is an alternative to the traditional approaches of celestial mechanics incorporating ordinary differential equations to model fragments evolution. The continuum approach to orbital debris evolution modeling has essential advantages for describing the evolution of a large number of particles, because it replaces the traditional tracking of space objects by modeling the evolution of their density of distribution.  相似文献   

7.
Active exploration of the space leads to growth of a near-Earth space pollution. The frequency of the registered collisions of space debris with functional satellites highly increased during last 10 years. As a rule a large space debris can be observed from the Earth and catalogued, then it is possible to avoid collision with the active spacecraft. However every large debris is a potential source of a numerous small debris particles. To reduce debris population in the near Earth space the large debris should be removed from working orbits. The active debris removal technique is considered that intend to use a tethered orbital transfer vehicle, or a space tug attached by a tether to the space debris. This paper focuses on the dynamics of the space debris with flexible appendages. Mathematical model of the system is derived using the Lagrange formalism. Several numerical examples are presented to illustrate the mutual influence of the oscillations of flexible appendages and the oscillations of a tether. It is shown that flexible appendages can have a significant influence on the attitude motion of the space debris and the safety of the transportation process.  相似文献   

8.
Low earth orbit has become increasingly congested as the satellite population has grown over the past few decades, making orbital debris a major concern for the operational stability of space assets. This congestion was highlighted by the collision of the Iridium 33 and Cosmos 2251 satellites in 2009. This paper addresses the current state of orbital debris regulation in the United States and asks what might be done through policy change to mitigate risks in the orbital debris environment. A brief discussion of the nature of orbital debris addresses the major contributing factors including size classes, locations of population concentrations, projected satellite populations, and current challenges presented in using post-mission active debris removal to mitigate orbital debris. An overview of the current orbital debris regulatory structure of the United States reveals the fragmented nature of having six regulating bodies providing varying levels of oversight to their markets. A closer look into the regulatory policy of these agencies shows that, while they all take direction from The U.S. Government Orbital Debris Mitigation Standard Practices, this policy is a guideline with no real penalty for non-compliance. Various policy solutions to the orbital debris problem are presented, ranging from a business as usual approach to a consolidated regulation system which would encourage spacecraft operator compliance. The positive aspects of these options are presented as themes that would comprise an effective policy shift towards successful LEO conservation. Potential economic and physical limitations to this policy approach are also addressed.  相似文献   

9.
Overview of the legal and policy challenges of orbital debris removal   总被引:1,自引:1,他引:1  
Brian Weeden   《Space Policy》2011,27(1):38-43
Much attention has been paid recently to the issue of removing human-generated space debris from Earth orbit, especially following conclusions reached by both NASA and ESA that mitigating debris is not sufficient, that debris-on-debris and debris-on-active-satellite collisions will continue to generate new debris even without additional launches, and that some sort of active debris removal (ADR) is needed. Several techniques for ADR are technically plausible enough to merit further research and eventually operational testing. However, all ADR technologies present significant legal and policy challenges which will need to be addressed for debris removal to become viable. This paper summarizes the most promising techniques for removing space debris in both LEO and GEO, including electrodynamic tethers and ground- and space-based lasers. It then discusses several of the legal and policy challenges posed, including: lack of separate legal definitions for functional operational spacecraft and non-functional space debris; lack of international consensus on which types of space debris objects should be removed; sovereignty issues related to who is legally authorized to remove pieces of space debris; the need for transparency and confidence-building measures to reduce misperceptions of ADR as anti-satellite weapons; and intellectual property rights and liability with regard to ADR operations. Significant work on these issues must take place in parallel to the technical research and development of ADR techniques, and debris removal needs to be done in an environment of international collaboration and cooperation.  相似文献   

10.
Space debris mitigation is one objective of the French Space Operations Act (FSOA), in line with Inter-Agency Space Debris Coordination Committee (IADC) recommendations, through the removal of non-operational objects from populated regions. At the end of their mission, space objects are to be placed on orbits that will minimize future hazards to space objects orbiting in the same region. The FSOA, which came into force in 2010, ensures that technical risks associated with space activities are properly mitigated. The Act confers CNES a central support role in providing technical expertise to government on regulations dealing with space operations. In order to address the compliance of disposal orbits with the law technical requirements, CNES draws up Good Practices as well as a dedicated tool, Semi-analytic Tool for End of Life Analysis (STELA).  相似文献   

11.
Recent advances in electrodynamic propulsion make it possible to seriously consider wholesale removal of large debris from LEO for the first time since the beginning of the space era. Cumulative ranking of large groups of the LEO debris population and general limitations of passive drag devices and rocket-based removal systems are analyzed. A candidate electrodynamic debris removal system is discussed that can affordably remove all debris objects over 2 kg from LEO in 7 years. That means removing more than 99% of the collision-generated debris potential in LEO. Removal is performed by a dozen 100-kg propellantless vehicles that react against the Earth's magnetic field. The debris objects are dragged down and released into short-lived orbits below ISS. As an alternative to deorbit, some of them can be collected for storage and possible in-orbit recycling. The estimated cost per kilogram of debris removed is a small fraction of typical launch costs per kilogram. These rates are low enough to open commercial opportunities and create a governing framework for wholesale removal of large debris objects from LEO.  相似文献   

12.
The amount of space debris is ever increasing, and pollution of the space environment has become a serious problem that can no longer be ignored. Consequently, the active removal of large space debris from crowded economically useful orbits should begin as soon as possible. The Japan Aerospace Exploration Agency has been investigating an active debris removal system that employs highly efficient electrodynamic tether (EDT) technology for orbital transfer. This study investigates the tether deployment from a spool-type reel using thrusters by means of numerical simulations of an EDT system. The thrusters are used in order to ensure the deployment of a tether with the length of several kilometers. In the simulations using a multiple mass tether model, the key parameters are estimated from various on-ground experiments. By means of the numerical simulations, the dynamics of tether deployment is studied and requirements of thruster needed for the deployment, such as the thrust forces and the periods of thruster activation, are clarified.  相似文献   

13.
《Acta Astronautica》2004,55(11):917-929
As a countermeasure for suppressing space debris growth (P. Eighler, A. Bade, Chain Reaction of Debris Generation by Collisions in Space—A Final Threat to Spaceflight? in: 40th Congress of the International Astronautical Federation, IAA-89-628, October 1989), the National Aerospace Laboratory of Japan is investigating a satellite capture, repair and removal system for non-cooperative satellites, part of which involves assessing the viability of electrodynamic tether (EDT) technology as an orbital transfer system. In this paper, some results concerning the time required to remove existing satellites, the behavior of flexible tethers during the debris separation phase, and orbital transfer strategies of EDT systems during space debris removal operations are described. From numerical simulations, it is found that EDT systems can transfer satellites from LEO to orbits with a short lifetime within a realistic timeframe. It is also found that the stability of EDT systems is compromised when debris separation occurs both while a tether current is running and when the ratio of the end mass to that of the service satellite is high. To ensure stability, the end mass should be selected from the target debris group with due regard for the maximum possible mass that can be maneuvered safely. Moreover, it is also found that orbital elements (a, e, i) can be changed independently with an adequate current control strategy.  相似文献   

14.
A model for the evolution of the low Earth orbit man-made debris population is presented and the results of several test cases discussed. Debris sources include normal operations in space, explosions occurring on spacecraft in orbit, and collisions between objects in orbit; the stochastic occurrence of these deposition events is modeled using Monte Carlo techniques. A technique for discriminating between objects populating long-life vs rapid-decay orbits is discussed and applied to the analysis of debris contributions from collisions of comparable sized objects. In varying degrees, each of the cases presented indicate there is cause for concern for spacecraft and space operations from the 1990s onward-man-made debris will play a role which may vary from presenting a considerable hazard to certain operations or certain spacecraft to effectively prohibiting the use of certain spaceccraft or space operations.  相似文献   

15.
2015 年2 月3 日,美国DMSP-F13 卫星发生爆炸解体,产生了百余块编目空间碎片。该卫星解体碎片主要分布在轨道高度600~1200 km 范围内,其中近50%的编目碎片在轨寿命将超过20 年,会对未来空间碎片环境构成长期影响。结合我国空间碎片环境工程模型SDEEM 对DMSP-F13 解体事件的分析结果显示,此次解体事件造成邻近轨道区域内空间碎片空间密度增加,对该区域航天器安全运行产生影响。  相似文献   

16.
This report summarises the presentations which took place at the ‘Space Traffic Control – Is the Space Debris Problem Solvable?’ conference hosted by the Royal Aeronautical Society on the 2nd July 2013. The conference sought to promote discussion over methods to deal with the issue of space debris in particular and speakers included representatives from the European Space Agency, the United Kingdom Space Agency, practitioners and academia. Themes which emerged during the conference included the urgency of the problem of space debris, the need for short-term and long-term solutions, the necessity for the development and implementation of space debris remediation technologies to complement existing mitigation efforts and, last but not least, the wider applications of space traffic control. Regarding the sub-title of the conference, ‘is the space debris problem solvable?’, it would appear from the presentations that while there is the potential for future management of the issue through debris remediation and harmonised mitigation efforts, no comprehensive solutions exist at the time of writing.  相似文献   

17.
Assuring the sustainability of space activities   总被引:1,自引:1,他引:0  
The growth of new space systems and the continued creation of orbital debris could in a few years make activities in Earth orbit unsustainable, so finding cost-effective ways to sustain space activities in Earth orbit is essential. Because outer space activities serve the needs of the military–intelligence, civil, and commercial communities, each with their own requirements, creating the necessary international agreements for reaching and maintaining a condition of sustainability will not be easy. This paper summarizes the primary issues for the international space community regarding our future ability to reap the benefit of space systems in Earth orbit. It explores several of the efforts to develop international agreements that would lead to or support the sustainability of space activities and examines the benefits and drawbacks of each approach. In particular, it reviews progress within the UN COPUOS, and examines the EU's proposal for an international Code of Conduct for Outer Space Activities. It also notes the need for states to establish or expand their own space legal infrastructure to conform to the UN treaties and guidelines for space activities.  相似文献   

18.
This paper attempts to search the lost fragments from the near-synchronous US TitanIIIC transtage explosion of February 21, 1992, known as the second major fragmentation of a TitanIIIC transtage. This breakup was accidentally observed by the Maui GEODSS sensor, and then a total of 23 objects were reported from the breakup, no orbital data on any fragments has been generated by the SSN. In order to evaluate the debris cloud orbital evolution, we demonstrate the actual US TitanIIIC transtage explosion by using breakup model and orbit propagator. The perturbing accelerations, considered in this analysis are the non-spherical part of the Earth's gravitational attraction, the gravitational attraction due to the Sun and Moon, and the solar radiation pressure effects. Finally, we will present a search strategy based on distribution of the right ascension of the ascending node about the catalogued objects and the debris particles from the US TitanIIIC transtage explosion.  相似文献   

19.
基于强化学习的软体机构抓捕策略研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张文奇  陈萌  谷程鹏 《上海航天》2019,36(5):63-70, 82
大型空间结构建造与维护、失效卫星检测与维修、轨道碎片清除等已成为航天技术发展亟待解决的现实问题。针对传统空间捕获机构质量惯量大、末端抓取精度要求高、抓捕对象适用范围窄不足等,创新性地提出基于IPMC(ion-exchange polymer metal composite)功能复合材料的多自由度仿生软体新型抓捕机构,同时基于强化学习算法提出多模态信息融合的抓捕操作强化学习策略,从而提升抓捕机构空间捕获的成功率,为空间抓捕技术的智能化发展提供新思路。  相似文献   

20.
Africano  John  Schildknecht  Thomas  Matney  Mark  Kervin  Paul  Stansbery  Eugene  Flury  Walter 《Space Debris》2000,2(4):357-369
Since more than 10 years there is evidence that small-size space debris is accumulating in the geosynchronous orbit (GEO), probably as the result of breakups. Two break-ups have been reported in GEO. The 1978 break-up of an EKRAN 2 satellite, SSN 10365, was identified in 1992, and in 1992 a Titan 3C Transtage, SSN 3432, break-up produced at least twenty observable pieces. Subsequently several nations performed optical surveys of the GEO region in the form of independent observation campaigns. Such surveys suffer from the fact that the field of view of optical telescopes is small compared with the total area covered by the GEO ring. As a consequence only a small volume of the orbital element-magnitude-space is covered by each individual survey. Results from these surveys are thus affected by observational biases and therefore difficult to compare. This paper describes the development of a common search strategy to overcome these limitations. The strategy optimizes the sampling for objects in orbits similar to the orbits of the known GEO population but does not exclude the detection of objects with other orbital planes. A properly designed common search strategy clearly eases the comparison of results from different groups and the extrapolation from the sparse (biased) samples to the entire GEO environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号