首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper aims to investigate the effects of lunar node resonance on the circular medium Earth orbits (MEO). The dynamical model is established in classical Hamiltonian systems with the application of Lie transform to remove the non-resonant terms. Resonant condition, stability and phase structures are studied. The lunar node resonance occurs when the secular changing rates of the orbital node (with respect to the equator) and the lunar node (with respect to the ecliptic) form a simple integer ratio. The resonant conditions are satisfied for both inclined and equatorial orbits. The orbital plane would have long period (with typical timescales of several centuries) fluctuation due to the resonance.  相似文献   

2.
This paper discusses the monthly and seasonal variation of the total electron content (TEC) and the improvement of performance of the IRI model in estimating TEC over Ethiopia during the solar maximum (2013–2016) phase employing as reference the GPS derived TEC data inferred from four GPS receivers installed in different regions of Ethiopia; Assosa (geog 10.05°N, 34.55°E, Geom. 7.01°N), Ambo (8.97°N, 37.86°E, Geom. 5.42°N), Nazret (8.57°N, 39.29°E, Geom. 4.81°N) and Arba Minch (6.06°N, 37.56°E, Geom. 2.62°N). The results reveal that, in the years 2013–2016, the highest peak GPS-derived diurnal VTEC is observed in the March equinox in 2015 over Arba Minch station. Moreover, both the arithmetic mean GPS-derived and modelled VTEC values, generally, show maximum and minimum values in the equinoctial and June solstice months, respectively in 2014–2015. However, in 2013, the minimum and maximum arithmetic mean GPS-derived values are observed in the March equinox and December solstice, respectively. The results also show that, even though overestimation of the modelled VTEC has been observed on most of the hours, all versions of the model are generally good to estimate both the monthly and seasonal diurnal hourly VTEC values, especially in the early morning hours (00:00–03:00?UT or 03:00–06:00?LT). However, it has also been shown that the IRI 2007 and IRI 2012 versions generally perform best in matching the diurnal GPS derived TEC values as compared to that of the IRI 2016 version. In addition, the IRI 2012 version with IRI2001 option for the topside electron density shows the highest overestimation of the VTEC as compared to the other options. None of the versions of the IRI model are proved to be able to capture the effects of geomagnetic storms.  相似文献   

3.
Solar and space radiation have been monitored using the R3D-B2 radiation risks radiometer-dosimeter on board a recent space flight on the Russian satellite Foton M2 within the ESA Biopan 5 facility mounted on the outside of the satellite exposed to space conditions. The solar radiation has been assayed in four wavelength bands (UV-C, 170–280 nm, UV-B, 280–315 nm), UV-A (315–400 nm) and PAR (photosynthetic active radiation, 400–700 nm). The data show an increasing tumbling rotation of the satellite during the mission. The photodiodes do not show a cosine response to the incident light which has been corrected. After calibration of the signals using the extraterrestrial spectrum, doses have been calculated for each orbit, for each day and for the total mission as basic data for the biological material which has been exposed in parallel in the Biopan facility. Cosmic ionizing radiation has been monitored and separated in 256 deposited energy spectra, which were further used for determination of the absorbed dose rate and flux. Basic data tables were prepared to be used by other Biopan 5 experiments. The paper summarizes the results for the Earth radiation environment at the altitude (262–304 km) of the Foton M2 spacecraft. Comparisons with the predictions of NASA Earth radiation environment experimental models AE-8 and AP-8, and the PSB97 model are also presented, which calculate the fluxes of ionizing radiation from a simulation. AP-8 is a model for trapped radiation.  相似文献   

4.
The storm-time HI(1216Å), OI(1304Å), OI(1356Å) emission lines and NO molecule γ (1,1) band computed from the onboard Intercosmos-Bulgaria-1300 measurements are examined. The auroral particles and ring current development are discussed as possible sources of the observed storm-time intensity increase over the theoretical intensity-solar zenith angle dependencies in the evening-midnight sector.  相似文献   

5.
We use Indian temperature data of more than 100 years to study the influence of solar activity on climate. We study the Sun–climate relationship by averaging solar and climate data at various time scales; decadal, solar activity and solar magnetic cycles. We also consider the minimum and maximum values of sunspot number (SSN) during each solar cycle. This parameter SSN is correlated better with Indian temperature when these data are averaged over solar magnetic polarity epochs (SSN maximum to maximum). Our results indicate that the solar variability may still be contributing to ongoing climate change and suggest for more investigations.  相似文献   

6.
The Virtual Habitat (V-HAB), is a Life Support System (LSS) simulation, created to perform dynamic simulation of LSS’s for future human spaceflight missions. It allows the testing of LSS robustness by means of computer simulations, e.g. of worst case scenarios.  相似文献   

7.
Over the last years, Carbon Nanotubes (CNT) drew interdisciplinary attention. Regarding space technologies a variety of potential applications were proposed and investigated. However, no complex data on the behaviour and degradation process of carbon nanotubes under space environment exist. Therefore, it is necessary to investigate the performance of these new materials in space environment and to revaluate the application potential of CNTs in space technologies.Hence, CiREX (Carbon Nanotubes – Resistance Experiment) was developed as a part of a student project. It is a small and compact experiment, which is designed for CubeSat class space satellites. These are a class of nanosatellites with a standardized size and shape. The CiREX design, electrical measurements and the satellites interfaces will be discussed in detail. CiREX is the first in-situ space material experiment for CNTs.To evaluate the data obtained from CiREX, ground validation tests are mandatory. As part of an extensive test series the behaviour of CNTs under solar ultra violet light (UV) and vacuum ultraviolet light (VUV) was examined. Single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT) and MWNT/resin composite (ME) were exposed to different light sources. After the exposure, the defect density was investigated with Raman spectroscopy. There is a clear indication that UV and VUV light can increase the defect density of untreated CNTs and influence the electrical behaviour.  相似文献   

8.
The cosmic ray ground level enhancement on January 20, 2005 is among the largest recorded events in the history of cosmic ray measurements. The solar protons of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps following major solar disturbances. The ionization effect in the Earth atmosphere is obtained for various latitudes on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The estimation of ionization rates is based on a numerical model for cosmic ray induced ionization. The evolution of atmospheric cascade is performed with the CORSIKA 6.52 code using FLUKA 2006b and QGSJET II hadron interaction models. The atmospheric ion rate ionization is explicitly obtained for 40°N, 60°N and 80°N latitudes. The time evolution of obtained ion rates is presented. It is demonstrated that ionization effect is negative for 40°N and small for 60°N, because of accompanying Forbush decrease. The ionization effect is significant only in sub-polar and polar atmosphere during the major ground level enhancement of 20 January 2005.  相似文献   

9.
Satellite-based limb occultation measurements are well suited for the detection and mapping of polar stratospheric clouds (PSCs) and cirrus clouds. PSCs are of fundamental importance for the formation of the Antarctic ozone hole that occurs every year since the early 1980s in Southern Hemisphere spring. Despite progress in the observation, modeling and understanding of PSCs in recent years, there are still important questions which remain to be resolved, e.g. PSC microphysics, composition, formation mechanisms and long-term changes in occurrence. In addition, it has recently become clear that cirrus clouds significantly affect the global energy balance and climate, due to their influence on atmospheric thermal structure.  相似文献   

10.
Time variations of the magnetic field of the Sun, seen as a star (the data 1968–2018, with more than 27 thousand daily measurements of the solar mean magnetic field), allowed to specify the rotation period of the gravitating solar mass: 27.027(6)?days, synodic. This indicates a presumably unknown physical connection between motions of the Sun and the Earth: in the course of a year our star accomplishes nearly 27 half-revolutions, while the planet itself performs an identical number of its spinnings during one complete axial revolution of the Sun. True origin of this strange Sun–Earth resonance is unknown, but it is supposed the phenomenon might be caused by slight coherent perturbations of gravity within the solar system.  相似文献   

11.
Herein, we report on the ionospheric responses to a total solar eclipse that occurred on 21 August 2017 over the US region. Ground-based GPS total electron content (TEC) data along with ground-based measurements (Millstone Hill Observatory (MHO) and digital ionosondes) and space-based measurements (COSMIC radio occultation (RO) technique) allowed us to identify eclipse-associated ionospheric responses. TEC data at ~20°, ~30°, and ~40°N latitudes from the west to east longitudes show not only considerable depression but also wave-like characteristics in TEC both in the path of totality and away from it, exclusively on the day of eclipse. Interestingly, the observed depressions are associated with lesser (higher) magnitudes at stations over which the solar obscuration percentage was meager (significant), a clear indication of bow-wave-like features. The MHO observes a 30% reduction in F2-layer electron densities between 180 and 220 km on eclipse day. Ionosonde-scaled parameters over Boulder (40.4°N, 100°E) and Austin (30.4°N, 94.4°E) show a significant decrease in critical frequencies while an altitude elevation is seen in the virtual heights of the F-layer only during the eclipse day and that decreases are associated with wave-like signatures, which could be attributed to eclipse-generated waves. The estimated vertical electron density profile from the COSMIC RO-based technique shows a maximum depletion of 40%. Relatively intense and moderate depths of TEC depression, considerable reductions in the F2-layer electron densities measured by the MHO and COSMIC RO-measured densities at the F2-layer peak, and elevations in virtual heights and reduction in the critical frequencies measured by ionosondes during the eclipse day could be due to the eclipse-induced dynamical effects such as gravity waves (GWs) and their associated electro-dynamical effects (modification of ionospheric electric fields due to GWs).  相似文献   

12.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   

13.
Although stand delineation approach based on aerial photographs and field survey produces high accuracy maps, it is labour-intensive and time consuming. Furthermore, conventional forest stand maps may have some uncertainties that can hardly be verified due to the experiments and skills of photo-interpreters. Therefore, researchers have been seeking more objective and cost-effective methods for forest mapping. LiDAR (Light Detection and Ranging) data have a high potential to automatically delineate forest stands. Unlike optical sensors, LiDAR height data provides information about both the horizontal and vertical structural characteristics of forest stands. However, it deprives of spectral data that may be successfully used in separating tree species. In this study, we investigate the potential of LiDAR – WorldView-3 data synergy for the automatic generation of a detailed forest stand map which can be used for a tactical forest management plan. Firstly, image segmentation was applied to LiDAR data alone and LiDAR/WorldView-3 data set in order to obtain the most suitable image objects representing forest stands. Visual inspection of the segmentation results showed that image objects based on the LiDAR/WorldView-3 data set were more compatible with the reference forest stand boundaries. After the segmentation process, the LiDAR and LiDAR/WorldView-3 data sets were independently classified using object-based classification method. We tested two levels of classification. The first was a detailed classification with 14 classes considering reference stand types. The second was the rough classification with 9 classes where some stand types were combined. The mean, standard deviation and texture features of LiDAR metrics and spectral information were used in the classification. The accuracy assessment results of LiDAR data showed that the Overall Accuracy (OA) was calculated as 0.31 and 0.43, and the Kappa Index (KIA) was calculated as 0.26 and 0.32 for the detailed and rough classifications, respectively. For the LiDAR/WorldView-3 data set, the OA values were calculated as 0.50 and 0.61, and the KIA were calculated as 0.46 and 0.55 for the detailed and rough classifications, respectively. These results showed that the forest stand map derived from the LiDAR/WorldView-3 data synergy is more compatible with the reference forest stand map. In conclusion, it can be said that the forest stand maps produced in this study may provide strategic forest planning needs, but it is not sufficient for tactical forest management plans.  相似文献   

14.
Chang'E-1,the orbiter circling the moon 200km above the moon surface,is the first Chinese Lunar exploration satellite.The satellite was successfully launched on 24th October 2007.There are 8 kinds of scientific payloads onboard,including the stereo camera,the laser altimeter,the Sagnac-based interferometer image spectrometer,the Gamma ray spectrometer,the X-ray spectrom-eter,the microwave radiometer,the high energy particle detector,the solar wind plasma detector and a supporting payload data management system.Chang'E-1 opened her eyes to look at the moon and took the first batch of lunar pictures after her stereo camera was switched on in 20th November 2007.Henceforth all the instruments are successfully switched on one by one.After a period of parameter adjustment and initial check out,all scientific instruments are now in their normal operating phase.In this paper,the payloads and the initial observation results are introduced.  相似文献   

15.
16.
The present paper is focused on the global spatial (altitude and latitude) structure, seasonal and interannual variability of the most stable in amplitude and phase eastward propagating diurnal and semidiurnal tides with zonal wavenumbers 2 and 3 derived from the SABER/TIMED temperatures for full 6 years (January 2002–December 2007). The tidal results are obtained by an analysis method where the tides (migrating and nonmigrating) and the planetary waves (zonally travelling, zonally symmetric and stationary) are simultaneously extracted from the satellite data. It has been found that the structures of the eastward propagating diurnal tides with zonal wavenumbers 3 and 2 change from antisymmetric with respect to the equator below ∼85 km height, to more symmetric above ∼95 km. The seasonal behavior of the DE3 is dominated by annual variation with maximum in August–September reaching average (2002–2007) amplitude of ∼15 K, while that of the DE2 by semiannual variation with solstice maxima and with average amplitude of ∼8 K. These tides revealed some interannual variability with a period of quasi-2 years. The seasonal behavior of the eastward propagating semidiurnal tide with zonal wavenumber 2 in the southern hemisphere (SH) is dominated by annual variation with maximum in the austral summer (November–January) while that in the northern hemisphere (NH) by semiannual variation with equinoctial maxima. The SE2 maximizes near 115 km height and at latitude of ∼30° reaching an average amplitude of ∼6 K. The seasonal behavior of the eastward propagating semidiurnal tide with zonal wavenumber 3 in both hemispheres indicates a main maximum during June solstice and a secondary one during December solstice. The tide maximizes near 110–115 km height and at a latitude of ∼30° reaching an average amplitude of ∼4.8 K in the SH and ∼4 K in the NH. The tidal structures of the two eastward propagating semidiurnal tides are predominantly antisymmetric about the equator.  相似文献   

17.
OH(6-2) rotational temperature trends and solar cycle effects are studied. Observations were carried out at the Maimaga station (63.04°N, 129.51°E) for the period August 1999 to March 2013. Measurements were conducted with an infrared spectrograph. Temperatures were determined from intensity ratios in the P branch of the OH band. The monthly average residuals of temperature after the subtraction of the mean seasonal variation were used for a search for the solar component of temperature response. The dependence of temperatures on solar activity has been investigated using the Ottawa 10.7 cm flux as a proxy. A linear regression fitting on residual temperatures yields a solar cycle coefficient of 4.24 ± 1.39 K/100 solar flux units (SFU). The cross-correlation analyses showed that changes of the residual temperature follow changes of solar activity with a quasi-two year delay (25 months). The temperature response at the delay of 25 months reaches 7 K/100 SFU. The possible reason of the observed delay can be an influence of quasi-biennial oscillations (QBO) of the atmosphere on the relation of temperature and solar activity. The value of the temperature trend after the subtraction of seasonal and solar components is not statistically significant.  相似文献   

18.
Atmospheric water vapour plays an important role in phenomena related to the global hydrologic cycle and climate change. However, the rapid temporal–spatial variation in global tropospheric water vapour has not been well investigated due to a lack of long-term, high-temporal-resolution precipitable water vapour (PWV). Accordingly, this study generates an hourly PWV dataset for 272 ground-based International Global Navigation Satellite System (GNSS) Service (IGS) stations over the period of 2005–2016 using the zenith troposphere delay (ZTD) derived from global-scale GNSS observation. The root mean square (RMS) of the hourly ZTD obtained from the IGS tropospheric product is approximately 4 mm. A fifth-generation reanalysis dataset of the European Centre for Medium-range Weather Forecasting (ECMWF ERA5) is used to obtain hourly surface temperature (T) and pressure (P), which are first validated with GNSS synoptic station data and radiosonde data, respectively. Then, T and P are used to calculate the water vapour-weighted atmospheric mean temperature (Tm) and zenith hydrostatic delay (ZHD), respectively. T and P at the GNSS stations are obtained via an interpolation in the horizontal and vertical directions using the grid-based ERA5 reanalysis dataset. Here, Tm is calculated using a neural network model, whereas ZHD is obtained using an empirical Saastamoinen model. The RMS values of T and P at the collocated 693 radiosonde stations are 1.6 K and 3.1 hPa, respectively. Therefore, the theoretical error of PWV caused by the errors in ZTD, T and P is on the order of approximately 2.1 mm. A practical comparison experiment is performed using 97 collocated radiosonde stations and 23 GNSS stations equipped with meteorological sensors. The RMS and bias of the hourly PWV dataset are 2.87/?0.16 and 2.45/0.55 mm, respectively, when compared with radiosonde and GNSS stations equipped with meteorological sensors. Additionally, preliminary analysis of the hourly PWV dataset during the EI Niño event of 2014–2016 further indicates the capability of monitoring the daily changes in atmospheric water vapour. This finding is interesting and significant for further climate research.  相似文献   

19.
A substantial quantity of wind data have been assembled from radar systems since CIRA-72 was formed: most of these radars include height ranging, and operate on a regular and even continuous basis. Systems include meteor and MF (medium frequency) Radars: an MST (mesosphere-stratosphere-troposphere) Radar (meteor mode); and an LF (low frequency) drift system. Latitudes represented are near 20° N/S, 35° N/S, 45° N/S, 50°N, 65° N/S. In all cases tidal oscillations were calculated so that corrected mean winds (zonal, meridional) are available - the meridional was not included in CIRA-72. Means for groups of years near 1980 are available, as well as individual recent years (1983, 1984) to allow assessment of secular trends: revised and improved analysis has been completed for several stations.Height-time cross-sections have been formed for each observatory: heights are typically ∼75–110 km, with time resolution of 7–30 days. Such detailed cross-sections were almost unknown before 1972. Comparisons with CIRA-72 are shown, and these emphasize the differences between hemispheres (NH, SH) in the radar winds. Other new winds from rockets and satellite radiances are contrasted with the radar set. There are important differences with the satellite-derived geostrophic winds (1973–78): possible explanations involve secular trends, longitudinal variations, and ageostrophy.  相似文献   

20.
We present results of wind measurements near the mesopause carried out with meteor radars (MRs) at Collm (51°N, 13°E), Obninsk (55°N, 37°E), Kazan (56°N, 49°E), Angarsk (52°N, 104°E) and Anadyr (65°N, 178°E) from October 1, 2017 till March 31, 2018. The Collm and Kazan MRs are SKiYMET radars with vertical transmission and radio echo height finding, while the other radars operate with horizontal transmission and without height finding. We paid particular attention to the meridional wind variability with periods of 4–6 days and 9–11 days. The waves with these periods are seen as spots of the wave activity in the wavelet spectra and include oscillations with different periods and different discrete zonal wavenumbers. These wave packets successively propagate as a group of waves from one site to another one in such a way that they are observed at one site and almost disappear at the previous one. The 4–6 wave group includes planetary-scale oscillations (individual spectral components) which have eastward phase velocities and mostly zonal wavenumbers 2 and 3, and the vertical wavelength exceeds 70 km at middle latitudes. The source of the oscillations is the polar jet instability. The wave group itself propagates westward, and the amplitudes of wind oscillations are approximately 5–6 m/s as obtained from the wind data averaged over the meteor zone. The 9–11 day wave set propagates westward as a group and mainly consists of spectral components which have westward phase velocity and zonal wavenumber 1. Amplitudes of these wind perturbations strongly vary from station to station and can reach, approximately, 8 m/s. The vertical wavenumber is 0.014 km−1 as taken from the Kazan and 0.05 km−1 according to the Collm data. We obtained a global view on the waves by using the AURA MLS geopotential data. We found a good correspondence between wave features obtained from the MR wind measurements and the MLS data. To our knowledge, such a wave propagation of planetary wave in the mesosphere/lower thermosphere (MLT) region has so far not obtained much attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号