首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
We reported the results of our investigations of wave activity in high-frequency range performed on board CLUSTER spacecraft in the middle-altitude cusp region, around 5 RE during August and September 2002. Our analysis was mainly based on the registration gathered by the WHISPER instrument (Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation). For a better understanding of the processes of wave-particle interaction and in order to understand the general plasma conditions in the cusp region, we also included in our analysis the data registered by the STAFF (Spatio-Temporal Analysis of Field Fluctuation experiment) instrument and the CIS (Ion Spectrometry experiment) instrument. These observations were carried out during different geomagnetic activity; under quiet conditions and during magnetic storm period. The space plasma is characterised by the ratio of plasma frequency to electron gyrofrequency, in this case, the local plasma frequency was, mainly, a little greater than the electron plasma, but it was also frequently observed that these two characteristic frequencies were not very different from one another. The whistler waves, electron-cyclotron waves, electron-acoustic waves and Langmuir waves have been detected when the spacecraft was crossing the middle-altitude cusp region. We suggested that the majority of those waves were generated by electron beams. For a better understanding the plasma conditions in the low and middle-altitude cusp region the past FREJA wave data results are used to describe typical wave activity detected in the low-altitude cusp region. The aim of this paper is to discuss, on the basis of a few chosen representative examples, the property of typical high wave activity detected in the lower part of cusp region.  相似文献   

2.
Observations of the direction of arrival and time of flight of HF signals propagating on a 1400 km path oriented along the mid-latitude trough are presented. At night, the signal commonly arrives from directions offset from the great circle bearing by up to 80° and these events have been categorised into five main types. Statistics indicating how often these categories of propagation were observed in the period August 2006 to September 2007 are presented. The physical mechanisms which result in the off great circle propagation are also discussed.  相似文献   

3.
The Digital Radio Mondiale (DRM), one of the new digital radio broadcasting standards, has been designed to overcome typical short wave radio channel difficulties, such as the multipath propagation and fast temporal changes of the received signal level, both related to the properties of the ionosphere along the path of propagation. In particular, some of the RF carriers used in the applied COFDM transmission technique serve to estimate the current state of the radio channel to enable the proper demodulation of the received signal.We have been detecting such RF carriers on select frequency channels (standard DRM broadcast) using a network of recording stations located in different parts of Poland in order to collect data on the HF radio channel. We have been also evaluating the usefulness of this procedure in providing information on the current state of the ionosphere in the refraction region between the transmitter and receivers. When the DRM system becomes more widespread, this method can supplement data that comes from the ionosondes, since it does not require much financial resources and the receivers can be easily scattered over a large area. This paper presents a set of experimental data and its analysis.  相似文献   

4.
5.
The present paper proposes to discuss the ionospheric absorption, assuming a quasi-flat layered ionospheric medium, with small horizontal gradients. A recent complex eikonal model (Settimi et al., 2013b) is applied, useful to calculate the absorption due to the ionospheric D-layer, which can be approximately characterized by a linearized analytical profile of complex refractive index, covering a short range of heights between h1 = 50 km and h2 = 90 km. Moreover, Settimi et al. (2013c) have already compared the complex eikonal model for the D-layer with the analytical Chapman’s profile of ionospheric electron density; the corresponding absorption coefficient is more accurate than Rawer’s theory (1976) in the range of middle critical frequencies. Finally, in this paper, the simple complex eikonal equations, in quasi-longitudinal (QL) approximation, for calculating the non-deviative absorption coefficient due to the propagation across the D-layer are encoded into a so called COMPLEIK (COMPLex EIKonal) subroutine of the IONORT (IONOspheric Ray-Tracing) program ( Azzarone et al., 2012). The IONORT program, which simulates the three-dimensional (3-D) ray-tracing for high frequencies (HF) waves in the ionosphere, runs on the assimilative ISP (IRI-SIRMUP-P) discrete model over the Mediterranean area ( Pezzopane et al., 2011). As main outcome of the paper, the simple COMPLEIK algorithm is compared to the more elaborate semi-empirical ICEPAC formula (Stewart, undated), which refers to various phenomenological parameters such as the critical frequency of E-layer. COMPLEIK is reliable just like the ICEPAC, with the advantage of being implemented more directly. Indeed, the complex eikonal model depends just on some parameters of the electron density profile, which are numerically calculable, such as the maximum height.  相似文献   

6.
径向圆跳动误差的最小二乘评定数学模型和微机数据处理   总被引:2,自引:1,他引:2  
用传统的测量方法只能得到被测零件的径向圆跳动误差的近似值。为了得到该项误差的准确值,需要研究新的测量方法。建立了径向圆跳动误差最小二乘评定数学模型,并编制了高级语言数据处理程序。在万能工具显微镜上获得了采样数据,给出了计算结果。  相似文献   

7.
In some space missions especially in the field of space gravitational wave detection, the telescope needs to point to a certain target through attitude movement and pointing control. In several mainstream gravitational wave detection missions, the detector usually consists of a cluster of three identical satellites, flying in a quasi-equilateral triangular formation with a big edge length, so every satellite needs two telescopes to point each other and constitute three giant Michelson-Type interferometers. Therefore, a satellite platform system with two telescopes is researched in this paper. This research helps to characterize the attitude motion of a telescope for space astronomical observation or space gravitational wave detection, provides new method on the telescope’s high-precision pointing control. For this purpose, we derive a satellite-telescope coupling attitude model, design the sliding mode controller for satellite and the stacked recurrent neural network adaptive controller for telescope. In the stacked recurrent neural network adaptive controller design, a sliding mode control technology is adopted. In addition, we propose a combinatorial optimization method for network weights in the stacked recurrent neural network training process, that is, the output layer is corrected by the adaptive law, and the correction of other layers adopt the error backpropagation method. Finally, a numerical simulation method verifies the effectiveness of the controller design.  相似文献   

8.
There are remarkable ionospheric discrepancies between space-borne (COSMIC) measurements and ground-based (ionosonde) observations, the discrepancies could decrease the accuracies of the ionospheric model developed by multi-source data seriously. To reduce the discrepancies between two observational systems, the peak frequency (foF2) and peak height (hmF2) derived from the COSMIC and ionosonde data are used to develop the ionospheric models by an artificial neural network (ANN) method, respectively. The averaged root-mean-square errors (RMSEs) of COSPF (COSMIC peak frequency model), COSPH (COSMIC peak height model), IONOPF (Ionosonde peak frequency model) and IONOPH (Ionosonde peak height model) are 0.58 MHz, 19.59 km, 0.92 MHz and 23.40 km, respectively. The results indicate that the discrepancies between these models are dependent on universal time, geographic latitude and seasons. The peak frequencies measured by COSMIC are generally larger than ionosonde’s observations in the nighttime or middle-latitudes with the amplitude of lower than 25%, while the averaged peak height derived from COSMIC is smaller than ionosonde’s data in the polar regions. The differences between ANN-based maps and references show that the discrepancies between two ionospheric detecting techniques are proportional to the intensity of solar radiation. Besides, a new method based on the ANN technique is proposed to reduce the discrepancies for improving ionospheric models developed by multiple measurements, the results indicate that the RMSEs of ANN models optimized by the method are 14–25% lower than the models without the application of the method. Furthermore, the ionospheric model built by the multiple measurements with the application of the method is more powerful in capturing the ionospheric dynamic physics features, such as equatorial ionization, Weddell Sea, mid-latitude summer nighttime and winter anomalies. In conclusion, the new method is significant in improving the accuracy and physical characteristics of an ionospheric model based on multi-source observations.  相似文献   

9.
Crater Detection Algorithms (CDAs) applications range from estimation of lunar/planetary surface age to autonomous landing on planets and asteroids and advanced statistical analyses. A large amount of work on CDAs has already been published. However, problems arise when evaluation results of some new CDA have to be compared with already published evaluation results. The problem is that different authors use different test-fields, different Ground-Truth (GT) catalogues, and even different methodologies for evaluation of their CDAs. Re-implementation of already published CDAs or its evaluation environment is a time-consuming and unpractical solution to this problem. In addition, implementation details are often insufficiently described in publications. As a result, there is a need in research community to develop a framework for objective evaluation of CDAs. A scientific question is how CDAs should be evaluated so that the results are easily and reliably comparable. In attempt to solve this issue we first analyzed previously published work on CDAs. In this paper, we propose a framework for solution of the problem of objective CDA evaluation. The framework includes: (1) a definition of the measure for differences between craters; (2) test-field topography based on the 1/64° MOLA data; (3) the GT catalogue wherein each of 17,582 craters is aligned with MOLA data and confirmed with catalogues by N.G. Barlow et al. and J.F. Rodionova et al.; (4) selection of methodology for training and testing; and (5) a Free-response Receiver Operating Characteristics (F-ROC) curves as a way to measure CDA performance. The handling of possible improvements of the framework in the future is additionally addressed as a part of discussion of results. Possible extensions with additional test-field subsystems based on visual images, data sets for other planets, evaluation methodologies for CDAs developed for different purposes than cataloguing of craters, are proposed as well. The goal of the proposed framework is to contribute to the research community by establishing guidelines for objective evaluation of CDAs.  相似文献   

10.
In this work historical investigations and modern results of classification of the Krasnoyarsk Reservoir are presented. The paper presents results of studying the dynamics of phytopigments and other optically active components, using multispectral satellite data. Several approaches to interpreting satellite data for optically complex inland water bodies are offered. Based on results of historical investigations it is shown that the spatial distribution of phytoplankton in the reservoir stems back to the time of its formation. Color index in the red spectral region (CIR) is introduced. A relationship between the color index and chlorophyll concentration is investigated. The CIR, derived from the AVHRR data, has been found to be related to chlorophyll concentration. Based on MODIS data, the waters of the Krasnoyarsk Reservoir have been classified in accordance with their optical spectral variability, using the technique of unsupervised IsoData classification. An empirical relationship between multispectral MODIS data and the ground-truth measurements of chlorophyll concentration has been found.  相似文献   

11.
The new release of the sensor and instrument data (Level-1B release 02) of the Gravity Recovery and Climate Experiment (GRACE) had a substantial impact on the improvement of the overall accuracy of the gravity field models. This has implied that improvements on the sensor data level can still significantly contribute to arriving closer to the GRACE baseline accuracy. The recent analysis of the GRACE star camera data (SCA1B RL02) revealed their unexpectedly higher noise. As the star camera (SCA) data are essential for the processing of the K-band ranging data and the accelerometer data, thorough investigation of the data set was needed. We fully reexamined the SCA data processing from Level-1A to Level-1B with focus on the combination method of the data delivered by the two SCA heads. In the first step, we produced and compared our own combined attitude solution by applying two different combination methods on the SCA Level-1A data. The first method introduces the information about the anisotropic accuracy of the star camera measurement in terms of a weighing matrix. This method was applied in the official processing as well. The alternative method merges only the well determined SCA boresight directions. This method was implemented on the GRACE SCA data for the first time. Both methods were expected to provide optimal solution characteristic by the full accuracy about all three axes, which was confirmed. In the second step, we analyzed the differences between the official SCA1B RL02 data generated by the Jet Propulsion Laboratory (JPL) and our solution. SCA1B RL02 contains systematically higher noise of about a factor 3–4. The data analysis revealed that the reason is the incorrect implementation of algorithms in the JPL processing routines. After correct implementation of the combination method, significant improvement within the whole spectrum was achieved. Based on these results, the official reprocessing of the SCA data is suggested, as the SCA attitude data are one of the key observations needed for the gravity field recovery.  相似文献   

12.
Monitoring chlorophyll-a (Chl-a) concentrations in inland waters is crucial for water quality management, since Chl-a is a proxy for phytoplankton biomass and, thus, for ecological health of a water environment. Chl-a concentration can be retrieved through the inherent optical properties (IOPs) of a water system, which, in turn, can be remotely sensed obtained. Quasi-analytical algorithm (QAA), originally developed for ocean waters, can also retrieve IOPs for inland waters after re-parameterizations. This study is aimed at assessing the performance of sixteen schemes composed by QAA original and re-parameterized versions followed by models that use absorption coefficients as inputs for estimating Chl-a concentration in Ibitinga reservoir, located at Tietê River cascading system, São Paulo State, Brazil. It was verified that only QAAV5 based schemes were able to obtain reasonable estimates for image data and that by four models tested presented similar and acceptable results for QAAV5 outputs. The best model were applied to a Ocean and Land Colour Instrument (OLCI) image. Light absorption in the reservoir showed to be dominated by colored dissolved organic matter (CDOM), and wide spatial and temporal variability of optical and water quality properties was observed.  相似文献   

13.
The diurnal, seasonal and latitudinal variations of the electron temperature in the Earth‘s topside ionosphere during relatively low solar activity period of 2005 – 2008 are investigated. In order to examine seasonal variations and morphology of the topside ionospheric plasma temperature, CNES micro-satellite DEMETER ISL data are used. Presented study is oriented on the dataset gathered in 2005 and 2008. Within conducted analysis, global maps of electron temperature for months of equinoxes and solstices have been developed. Furthermore, simultaneous studies on two-dimensional time series based on DEMETER measurements and predictions obtained with the IRI-2012 model supply examination of the topside ionosphere during recent deep solar minimum. Comparison with the IRI-2012 model reveals discrepancies between data and prediction, that are especially prominent during the periods of very low solar activity.  相似文献   

14.
A total of more than 260 continuous stations and 2000 campaign stations from the Crustal Movement Observation Network of China (CMONOC) project, covering the Chinese mainland and its surrounding areas during the period of 1998–2018, are processed using the Bernese Global Navigation Satellite System (GNSS) software via a state-of-the-art method. We obtain the coordinate time series of all the stations given in the reference frame ITRF2014, estimate the coseismic deformation, and remove outliers. Lastly, we present the latest, most complete, and most accurate contemporary horizontal velocity field with respect to the stable Eurasian plate, irrespective of the postseismic deformations. This study shows that the signal of tectonic movement in Western China is stronger than that in Eastern China particularly in the Tibetan Plateau, with a rate of 18–32?mm/a. Moreover, the signal decays sharply from south to north. However, North China and South China move coherently to the ESE direction mostly at a rate of 4–10?mm/a and have not experienced any abrupt velocity gradients in their interiors. Meanwhile, Northeast China has the lowest velocity of only 2–4?mm/a in addition to the coastal areas that have slightly larger velocities. The densified and continuous observation of GNSS stations are of great significance to the study of the present-day crustal movement and tectonic deformation characteristics of the Chinese mainland. This would help to provide better constraints on the kinematics and dynamics of the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号