首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The state-of-the-art of electric vehicles (EVs) is discussed with examples of prototype vehicles-Electric G-Van, Chrysler TEVan, Eaton DSEP, and Ford/GE ETX-II. The acceleration, top speed, and range of these electric vehicles are delineated to demonstrate their performance capabilities, which are comparable with conventional internal combustion engine (ICE) vehicles. The prospects for the commercialization of the Electric G-van and the TEVan and the improvements expected from the AC drive systems of the DSEP and ETX-II vehicles are discussed. The impacts of progress made in the development of a fuel cell/battery hybrid bus and advanced EVs on the competitiveness of EVs with ICE vehicles, and their potential for reduction of air pollution and utility load management are postulated  相似文献   

2.
Hybrid electric vehicles are receiving increased interest as an approach to decrease vehicle pollution, dependence, and consumption of liquid petroleum and meet forthcoming Government vehicle emission standards. A number of schemes are under consideration (heat engine battery, fuel cell battery, peaking battery, inner-city battery, etc.). The success of any of the approaches will be dependent on battery capabilities, i.e., power, density, life, and cost. The nickel-metal hydride system appears to be the most promising of the candidate battery chemistries. Preliminary designs and analysis have been prepared and are presented for various configurations. Initial performance characterization tests are presented. It is concluded that a bipolar package arrangement for the Ni-MH chemistry appears most suited for the hybrid vehicle application considered  相似文献   

3.
The Hy-StorTM Battery is a rechargeable battery being developed for electric vehicles and other large battery applications. The battery combines the high energy storage capability of metal hydride alloys with the high cycle life and discharge rate capabilities of nickel-hydrogen cells. It is a hybrid battery concept that offers potential performance, economic and safety advantages over other large battery technologies. Very recent developments indicate that much smaller batteries can also be produced to meet the needs of the portable computer and other portable electronic device markets. Initial tests demonstrated the ability of a metal hydride storage system to achieve high cycle life when absorbing hydrogen that was saturated with battery electrolyte solution and then passed through a purifier. Based on positive test results, a patent for the Hy-Stor battery was applied for and granted  相似文献   

4.
Beginning in 1990, the major automotive passenger vehicle manufacturers once again re-evaluated the potential of the battery powered electric vehicle (EV). This intensive effort to reduce the battery EV to commercial practice focused attention on the key issue of limited vehicle range, resulting from the low energy density and high mass characteristics of batteries, in comparison to the high energy density of liquid hydrocarbon (HC) fuels. Consequently, by 1995, vehicle manufacturers turned their attention to hybrid electric vehicles (HEV). This redirection of EV effort was highlighted finally in 1997, at the 57th Frankfurt Motor Show, the Audi Duo parallel type hybrid was released for the domestic market as a 1998 model vehicle. Also at the 1997 32nd Tokyo Motor Show, Toyota Hybrid System (THS) Prius was released for the domestic market as a production 1998 model vehicle. This paper presents a comparative analysis of the key features of these two 1998 model year production hybrid systems. Among the conclusions, two issues are evident: one, the major manufacturers have turned to the hybrid concept in their search for solutions to the key EV issues of limited range; and, heating/air conditioning; and two, the focus is now on introducing hybrid EV for test marketing domestically  相似文献   

5.
Since they were first introduced in the early 1990s, lithium ion batteries have enjoyed unprecedented growth and success in the consumer marketplace. Combining excellent performance with affordability, they have become the product of choice for portable computers and cellular phones. Building on the same energy and life cycle attributes, which marked their consumer market success, but adding new high power storage capability, lithium ion technology is now poised to play a similar role in the transportation, military, and space sectors. With major program in various aspects of electric and hybrid electric vehicles, Saft has developed a family of battery products that address the power and energy storage where lightweight, long life, and excellent energy or power storage capabilities are needed. Significant progress in the packaging and control of high power, yet compact, batteries has been accomplished for a variety of vehicle applications. This paper discusses the charger and balancing strategies of one of this family of products  相似文献   

6.
本研究之目的是为了模拟可控有升力飞行器周围的加热和压力场,研究受热表面的烧蚀现象,以便发展地面的实验能力。在电弧加热器上,利用超声速湍流平板技术,进行控制翼模型分离、传热和烧蚀实验。结果表明,由于翼角前有一条横缝,分离效应减弱,导致产生分离的最小翼角增大。由于分离流动影响,在翼上及其周围压力和热流升高,烧蚀速度大大增加。本文给出了有关的相关公式。  相似文献   

7.
随着社会发展,电动汽车、消费类(3C)电子产品、储能装置等对锂离子电池的能量密度提出了更高要求。富锂锰基正极材料具有高比容量(≈250 mAh/g)、高工作电压(≈3.6 V)及低成本等优势,有望成为下一代商用高比能电池正极材料。首次库仑效率低、倍率性能差、电压/容量衰减快等问题限制了富锂锰基正极材料的工程化应用。本文综述了富锂锰基正极材料的最新研究进展,重点从材料结构、电化学反应机理、失效机制和改性方法等几方面进行了阐述。研究表明,采用离子掺杂、表面包覆、晶体结构调控等技术,可显著改善富锂锰基正极材料的电化学性能。最后,对富锂锰基正极材料的发展方向进行了展望。  相似文献   

8.
电热除冰传热特性的结冰风洞实验研究   总被引:1,自引:0,他引:1  
利用结冰风洞设备和电加热除冰装置,采用实验的方法研究了不同加热模式、冷却时间、加热功率和冰脱落对传热特性的影响。研究表明:设置合理的冷却时间和加热功率,采用高功率的周期性加热模式比采用低功率的连续性加热模式更优越,不仅除冰时间更少,而且能量消耗也更少,从而为电热除冰系统加热模式的选取和传热特性的优化提供了实验依据。  相似文献   

9.
蓄热式加热器是目前高温纯净空气风洞最具潜力和优势的一种加热方式。针对空心砖型蓄热式加热器,开展了空心砖型蓄热单元初步设计研究,涉及换热性能、压降控制和热应力评估等方面。结合一个预定的试验状态要求,对空心砖型蓄热单元的初步设计进行分析与讨论,评估孔径、孔间距、蓄热阵高度等几何设计参数对换热性能、压降控制和当地热应力水平的影响,进而确定空心砖型蓄热单元的基本设计方案,结果表明孔径、孔间距是加热器设计的关键参数,对其它参数、运行性能、安全性具有显著影响,高度选择直接影响出口气流温度水平及其稳定时间,初步设计方案可以很好地满足马赫数6.0试验模拟状态要求。研究结果可为空心砖型蓄热式加热器工程设计和方案评估提供有益的参考。  相似文献   

10.
介绍了常规高超声速风洞增设加热器的必要性及不同类型加热器的优缺点,重点介绍了电预热金属蓄热式加热器的设计温度、内径、对流换热系数和蓄热长度等性能参数的计算方法。调试结果表明,加热器的所有性能参数均达到设计指标。  相似文献   

11.
基于飞机电热除冰过程冰层融化的特征,开展了一维和二维电热除冰相变传热特性数值计算研究和参数影响分析,重点考虑了加热模式、冷却时间、加热功率和加热单元间隔等参数对冰层相变传热的影响。采用了基于焓-多孔介质方法的热焓模型,将计算区域看作是包括多层材料和冰、水及其混合区的多孔介质,采用了结构化网格拓扑结构对计算区域进行划分,采用了有限体积方法对控制方程组进行离散,采用线性插值的方法获得混合区的物性参数,耦合能量方程和液态水体积分数公式,迭代求解了计算域的温度分布,获得了不同材料间界面温度的变化,重点分析了冰-保护层界面的温度变化。基于二维电热除冰模型的冰-保护层界面温度不均匀特征,提出了耦合考虑冰-保护层界面热点和冷点温度的冰脱落温度判断准则。研究表明:高功率的周期性加热模式要优于低功率的连续性加热模式,采用合理的冷却时间和加热功率,可获得更低的能量消耗和更好的除冰效果。合理设置加热单元间隔可以提高周期性的除冰效率,但也会形成冷点和热点,造成冰-保护层界面温度分布的不均匀。冰-保护层界面的冷点类似于锚点,即使此刻热点的冰已经融化,整个冰层也无法脱落和剥离。因此,冰脱落的判断要耦合考虑界面热点和冷点的温度特征。   相似文献   

12.
The fiber plaque technology used in the alkaline Ni-Cd battery system known as FNC (fiber nickel cadmium) is discussed. An advanced design called FNC-Recom, which contains additional fiber plates that are used as a recombination device for rapid oxygen consumption, is described. The FNC-Recom cell design is explained, and performance data and experiences with their use in electric vehicles are reported  相似文献   

13.
Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour  相似文献   

14.
New battery applications ranged from an implanted battery that powers an artificial heart, to powering a seismic sensor behind an oil-well drilling bit as it grinds through rock looking for oil-bearing structure. These applications require high reliability that justifies the cost of thorough qualification testing, production control, acceptance testing of every cell, and tracking every cell by its serial number through its lifetime. Electric vehicle developments ranged from electric scooters for commuting to work in Europe to electric cars connected to the electric grid when not being driven. Availability of their battery energy for carrying load peaks is so valuable that the electric utility being supported could offer to replace the vehicles batteries whenever they wear out, with no cost to the car owner.  相似文献   

15.
The early 1900's era of electric cars ended because the batteries didn't last long enough, and a new gasoline-engine-powered car cost less than a replacement battery. Long-life batteries are the key to achieving a low life-cycle cost for the electric vehicles that will help solve the air-pollution problem in our cities. New ways of making batteries last longer are discussed  相似文献   

16.
The zinc bromine battery is a high energy density battery that utilizes low cost materials. The battery is of unique construction utilizing plastic storage tanks for the zinc bromide electrolyte and plastic bipolar electrode stacks. This paper briefly describes the zinc bromine battery technology and the experience gained in installing and operating an electric vehicle with this advanced system. The described electric vehicle (The “T-Star”) was tested in March 1993 on the Chrysler Proving Grounds in Phoenix, Arizona and it participated in the May 1993 American Tour de Sol capturing second place over all and first place in the student division  相似文献   

17.
 This paper focuses on the usage of the forward-facing cavity and opposing jet combinatorial configuration as the thermal protection system (TPS) for hypersonic vehicles. A hemispherecone nose-tip with the combinatorial configuration is investigated numerically in hypersonic free stream. Some numerical results are validated by experiments. The flow field parameters, aerodynamic force and surface heat flux distribution are obtained. The influence of the opposing jet stagnation pressure on cooling efficiency of the combinatorial TPS is discussed. The detailed numerical results show that the aerodynamic heating is reduced remarkably by the combinatorial system. The recirculation region plays a pivotal role for the reduction of heat flux. The larger the stagnation pressure of opposing jet is, the more the heating reduction is. This kind of combinatorial system is suitable to be the TPS for the high-speed vehicles which need long-range and long time flight.  相似文献   

18.
Our global temperature's rise is caused by our atmosphere's ever-increasing content of carbon-dioxide, most of which comes from the exhaust of transportation vehicles. This has resulted in a worldwide search for alternatives to the high-powered gasoline fueled automobiles in wide use today. Replacing gasoline-powered cars with electric and hybrid-electric vehicles has become the most popular tool for reducing carbon-dioxide emissions into our atmosphere. Evaluation of electric alternatives to gasoline-engine propulsion of cars covers such topics as the efficiency, weight, and lifetime of fuel cells, and increasing the charge/discharge life of the new lightweight lithium and nickel metal-hydride batteries. A summary of the work currently being carried out on battery and hybrid vehicles is included here  相似文献   

19.
Hypersonic vehicles with turbojet, ramjet, and scramjet engines are expected to be widely applied to future transportation systems. Due to high-speed flight in the atmosphere, body outer surfaces suffer strong aerodynamic heating, and on the other hand, combustion chamber inter walls are under extremely high temperature and heat flux. Therefore, more efficient and stable active cooling technologies are required in hypersonic vehicles, such as regenerative cooling, film cooling, and transpiration cooling, as well as their combinations. This paper presents a comprehensive literature review on three active cooling methods, i.e., regenerative cooling, film cooling, and transpiration cooling, and deeply analyzes the mechanism of each cooling method, including the fluids flow, heat transfer, and thermal cracking characteristics of different hydrocarbon fuels in regenerative cooling, the heat transfer and flow mechanism of film cooling under supersonic mainstream conditions, and the heat transfer and flow mechanism of transpiration cooling.  相似文献   

20.
Major recent electric vehicle (EV) programs in North America, Europe, and Japan are reviewed. The developments discussed include electric vehicles for fleet operation and electric passenger cars for urban transit. All major auto makers have had their own concept electric vehicle programs, targeted at commercial production in the late 1990s. It Is noted that, with different objectives for various electric vehicles, considerations such as cost, reliability, efficiency, maintenance, durability, weight, size, and noise level should be compromised for the propulsion system design. Consequently, DC motor drives, induction motor drives, and permanent magnet brushless DC motor drives will continually be used for EV propulsion systems in the future, with DC drives being gradually replaced by AC drives. The rapid advances in power semiconductor devices and microprocessors have made it possible to build reliable and cost-effective AC drive systems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号