首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
No cometary nucleus has ever been observed directly. A model is deduced from ground-based and space data on cometary atmospheres. The main features of the chemical composition of cometary nuclei and the estimation of their sizes are described. The treatment of the process of vaporization of dusty ice shows, contrary to widespread opinion, that the islands on the non-volatile porous mantle are formed, not in perihelion but at large heliocentric distances and on the coldest parts of a nucleus. It is shown that the mantle does not disappear when the comet approaches the Sun, as it is often supposed, but is fluidized. The proposed model can give a number of properties of cometary nuclei but some of them can be established by direct space methods only. Such properties are the masses, the rotational velocities, the homogeneity of the dust-ice mixture, the internal structure, the power of the internal sources of energy.  相似文献   

2.
The Cometary Sampling and Composition Experiment on board of European Space Agency's cornerstone mission ROSETTA is designed to identify organic molecules in cometary matter in situ by a combined pyrolysis gas chromatographic and mass spectrometric technique. Its capillary columns coated with chiral stationary phases received considerable attention, because they are designed for separations of non-complex enantiomers to allow the determination of enantiomeric ratios of cometary chiral organic compounds and consequently to provide information about the origin of molecular parity violation in biomolecules. To get gas chromatographic access to organic compounds on the comet, where macromolecules and complex organic polymers of low volatility are expected to make up the main organic ingredients, the combination of two injection techniques will be applied. The pyrolysis technique performed by heating cometary samples stepwise to defined temperatures in specific ovens resulting in thermochemolysis reactions of polymers and a chemical derivatization technique, in which the reagent dimethylformamide dimethylacetal assists pyrolysis derivatization reactions in producing methyl esters of polar monomers. The combination of the reagent assisted pyrolysis gas chromatographic technique with enantiomer separating chromatography was tested with laboratory-produced simulated cometary matter.  相似文献   

3.
A self-similar solution is obtained for one dimensional adiabatic flow behind a cylindrical shock wave propagating in a rotating dusty gas in presence of heat conduction and radiation heat flux with increasing energy. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston (or inner expanding surface). The heat conduction is expressed in terms of Fourier’s law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature only. In order to obtain the similarity solutions the initial density of the ambient medium is assumed to be constant and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. The effects of the variation of the heat transfer parameters and non-idealness of the gas in the mixture are investigated. The effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are also investigated.  相似文献   

4.
Plasma and magnetic field disturbances accompanying dust particle impacts are explained by means of creation of a secondary cloud around the spacecraft. Cold cometary ions impinging upon the cloud are scattered by atoms of the cloud. This scattering changes initial angular distribution of cometary ions. Magnetic field perturbation is created by the friction between the electron component of the cometary plasma flow and the cloud.  相似文献   

5.
We explore the hydrodynamical evolution of dusty gas around active galactic nuclei (AGN) driven by the radiation from circumnuclear starbursts. For this purpose, we calculate the temporal equilibrium states between the radiation force by starburst regions and the gravity in galactic nuclei. As a result, we find that the equilibrium patterns between the radiation force and the gravity are roughly characterized by three types. The first is the situation where the starburst luminosity is larger than the Eddington luminosity. In this case, the dusty gas is blown out like a wind. We may detect intense infrared (IR) radiation from the starburst regions screened by blown-out dusty gas. The second is the situation when the radiation force is comparable to the gravity. In this case, the equilibrium surface surrounds the nuclear regions as well as starburst regions. Since the dusty gas absorbs UV or soft X-rays from the center and re-emits IR radiation, we may recognize it as a Seyfert 2 galaxy. The last is the situation where the starburst luminosity is small. In this case, the dusty wall of equilibrium would be built up only in the vicinity of starburst regions. The radiation from central regions is rarely obscured, because the dusty regions have only small angular extension. So, it would look like a Seyfert 1 galaxy which is characterized by intense soft X-rays. When we consider the stellar evolution in starburst regions, the starburst luminosity decreases with time. Therefore, we can recognize the above three types as time evolution; a starburst galaxy (first stage), a Seyfert 2 galaxy (second stage), and a Seyfert 1 galaxy (third stage). Note that we present here an alternative scenario for explaining the relation between Sy 1's and Sy 2's to the standard “Unified Scheme”.  相似文献   

6.
The nucleus of an active comet, such as comet Halley near its perihelion, produces large quantities of gas and dust. The resulting cometary atmosphere, or coma, extends more than a million kilometers into space, where it interacts with the solar wind. An “induced” cometary magnetosphere is a consequence of this interaction. Cometary ion pick-up and mass loading of the solar wind starts to take place at very large cometocentric distances. Eventually this mass loading leads to the formation of a weak cometary bow shock. Even closer to the nucleus, collisional processes, such as ion-neutral chemistry, become important. Other features of the magnetosphere of an active comet include a magnetic barrier, a magnetotail, and a diamagnetic cavity near the nucleus. X-ray emission from comets is produced by the interaction of the solar wind with cometary neutrals and this topic is also discussed. A broad review of the cometary magnetosphere will be given in this paper.  相似文献   

7.
本文基于可压缩磁流体动力学模型,数值研究了尾瓣巾具有超Alfven速流动的等离子体彗尾的动力学特征。结果表明,等离子体片和尾瓣之间的剪切等离子体流动将会激发流动撕裂模不稳定性,引起彗尾等离子体片中发生磁场重联,形成磁岛和高密度的等离子体团。进而模拟了太阳风引起的局部驱动力对等离子体彗尾中磁场重联的影响,其特征时间远大于流动撕裂模。我们认为一些观测到的等离子体彗尾中的四块和彗尾截断事件可能主要与彗尾中剪切等离子体流动所引起的流动撕裂模不稳定性有关。   相似文献   

8.
In our current understanding, active cometary nuclei comprise a volatile-depleted outer crust covering a mixture of dust and ices. During each perihelion passage the thermal wave penetrates the crust and sublimates a portion of these ices, which then escape the nucleus, dragging with them dust particles that replenish the coma and dust tail. The flux of released gases is likely to vary as a complex function of solar distance, nucleus structure, spin rate, etc. It has been previously hypothesised that at some point a fluidised state could occur, in which the gas drag is approximately equal to the weight of overlying dust and ice grains. This state is well understood and used in industrial processes where extensive mixing of the gas and solid components is desired. The literature on fluidisation under reduced gravity and pressure conditions is here reviewed and published relations used to predict the conditions under which fluidisation could occur in the near-surface of a cometary nucleus.  相似文献   

9.
Based on the ion, electron and neutral gas observations, performed by five of the six sensors comprising the PLASMAG-1 experiment on board VEGA-1 and -2, the following results are discussed: (1) the existence of the bow shock and its location at 1.1×106 km for VEGA-1 inbound; (2) the existence of a cometopause and its location at 1.6×105 km for VEGA-2 inbound; (3) the plasma dynamical processes occurring inside the cometosheath; (4) the phenomena taking place within the cometary plasma region including mass-spectroscopy of cometary ions at distances 1.5×104 km; (5) the existence of keV electrons near closest approach to the nucleus; and (6) the radial dependence of the cometary neutral gas and the comparison with model calculations, yielding a mean ionization scale length of 2×106 km and an overall production rate of 1.3×1030 molecules s−1 for VEGA-1 inbound. The results are also discussed in the context of the other, both remote and in-situ, observations, performed on board the VEGA- and GIOTTO-spacecraft.  相似文献   

10.
When the VEGA and GIOTTO spacecrafts flew by comet p/Halley in 1986 the mass-spectrometers Puma and PIA measured the composition of cometary dust particles impacting at speeds of well above 65 km/s. Ion formation upon impact lead to mostly atomic ions. However, a small fraction of the ions measured could be related to molecules. A sophisticated analysis allowed for the first time to point to the chemical nature of cometary organics based on actual mass spectra. With the instrument CoMA for the NASA-BMFT mission CRAF much higher mass-resolution and molecule masses become accessible for in situ measurement, and will yield complementary information to the gas chromatograph CIDEX also onboard CRAF.  相似文献   

11.
EPONA is an energetic particle detector system incorporating totally depleted silicon surface barrier layer detectors. Active and passive background shielding will be employed and, by applying various techniques, particles of different species, including electrons, protons, alpha particles and pick-up ions of cometary origin may be detected over a wide spectrum of energies extending from the tens of KeV into the MeV range.

The instrument can operate in two modes namely (a) in a cruise phase or storage mode and (b) in a real time mode. During the real time mode, observations at high spatial (octosectoring) and temporal (0.5s) resolution in the cometary environment permit studies to be made of accelerated particles at the bow shock and/or in the tail of the comet. In conjunction with magnetic field measurements on board Giotto, observations of energetic electrons and their anisotropies can determine whether the magnetic field lines in the cometary tail are open or closed. Further, the absorption of low energy solar particles in the cometary atmosphere can be measured and such data would provide an integral value of the pertaining gas and dust distribution. Solar particle background measurements during encounter may also be used to correct the measurements of other spacecraft borne instruments potentially vulnerable to such radiation.

Solar particle flux measurements, obtained during the cruise phase will, when combined with simultaneous observations made by other spacecraft at different heliographic longitudes, provide information concerning solar particle propagation in the corona and in interplanetary space.  相似文献   


12.
The trapping of various gases by water ice at low temperatures (20-80K) and their release from the ice upon warming, was studied experimentally. The results of these experiments, together with a computation of the thermal evolution of a cometary nucleus, can explain the gas and dust jets which were observed to emanate from the nucleus of P/Halley. The experimental results are important also to the gas content of Titan.  相似文献   

13.
The Comet Rendezvous Asteroid Flyby (CRAF) mission is the next step in the exploration of comets as well as the first of NASA's new generation of spacecraft for primitive body and outer-planet missions. If launched in September 1992, CRAF will fly by one or two asteroids en route to a rendezvous with P/Tempel 2 in December, 1996. The post-rendezvous mission profile includes: (1) a reconnaissance phase to assess the cometary environment and to determine the mass of the nucleus; (2) a nucleus observation phase, lasting over a year, with emphasis on determining the physical and chemical properties of the nucleus and the changes associated with the onset of cometary activity; and (3) a perihelion phase with emphasis on studying the nature and dynamics of the dust, gas, and plasma in the coma and tail.  相似文献   

14.
In an attempt to evaluate correlations between several properties of comets we report the results of a cometary research involving a criterious analysis of gas and dust mass production rates in Comets 67P/Churyumov-Gerasimenko (main target of Rosetta Mission), 1P/Halley, Hyakutake (C/1996 B2), and 46P/Wirtanen and make a comparison between them.  相似文献   

15.
16.
Observations of the distribution and evolution of a number of the major constituents of the neutral coma (CN, C2, CH, O, H, Na) of Comet Halley were made during two observing periods, each of 3 weeks duration, from the Table Mountain Observatory, California. The first period was pre-perihelion, in late November/December 1985. The second period, from Feb 28 to March 22 1986, covered the five close spacecraft encounters with Halley, and when ICE flew some 20 M Km upstream of Halley. Sodium emission was recorded in early Dec 1985 from the near-nuclear region at a heliocentric distance of 1.4 AU, an observation confirmed with the UCL Doppler Imaging system. The CN coma could be detected to an outer diameter of more than 4M Km in Dec 1985, and 5 – 6M Km in early March 1986, allowing the production of heavy cometary pick-up ions to be estimated. Observations of the cometary ion coma (H2O+ and CO+ ions) showed considerable variability from day to day, particularly during the period of the spacecraft encounters. These observations have been used, in conjuction with the neutral coma data, to map the flow field of cometary ions. In early Dec. 1985, Halley developed a traditional “type I” ion tail, which persisted until late April 1986. It has also been possible to evaluate the ion flow fields within the narrow core of the ion tail, and in the surrounding diffuse, low density, regions populated by pick-up and extracted cometary ions, and by slowed solar wind ions. Tail disconnection events were observed on several occasions, particularly between the VEGA 2 and GIOTTO encounters, and with a highly spectacular event on March 19 1986.  相似文献   

17.
Anticipating the new results from the space missions to Comet Halley and Comet Giacobini-Zinner, we make a brief review of recent theoretical and observational studies of dust-plasma environment. In order to relate different disciplines in cometary research in the context of comet-solar wind interaction, two separate issues: (a) surface processes and (b) plasma processes are considered to indicate how various kinds of observations of cometary dust comas and tails may be used to infer the conditions of solar wind - comet interaction and the corresponding plasma processes in the cometary ionospheres and ion tails (and vice-versa). In particular, it is suggested that the narrow sunward-pointing dust streamers emitted from the cometary nuclei could be related to the electrostatic transport of sub-micron dust over the nuclear surfaces at large heliocentric distances; and the striae sometimes observed in cometary dust tails at smaller heliocentric distances could be the consequence of electrostatic fragmentation of fluffy dust particles in the ion tails.  相似文献   

18.
Spherically symmetric radial temperature profiles of cometary nuclei have been determined numerically (and for simplified models analytically) in dependence on the orbital position of the periodic comet Halley. These temperature fields in the nucleus are connected with thermal stress fields which have been calculated with the assumption of elastic properties of cometary matter. The remarkable result is the possible existence of stresses, strong enough to cause internal cracking of the nucleus and break-ups of the cometary surface. This may be essential understanding normal cometary activity as well as outbursts and splits.  相似文献   

19.
Thermal stresses due to temperature differences between the cometary surface and the core have been calculated for different models of cometary nuclei. It is shown, that for comets on P/Halley-type orbits thermomechanical stresses exceed the (cohesive) strength of water ice near to the cometary surface. Consequently, there should be cracks on cometary surfaces. The existence of line structures on the surface of P/Halley, which might be due to thermomechanical cracks, is demonstrated on the basis of VEGA-images from the surface of P/Halley.  相似文献   

20.
The physical and chemical processes responsible for cometary ionospheres are now beginning to be understood, due to comparisons between theoretical results and recently obtained in situ observations of the ionospheric plasma and magnetic field of comet Halley. The contact surface which separates outflowing cometary plasma from solar wind controlled cometary plasma can be explained in terms of a balance between the magnetic pressure gradient force and ion-neutral drag. An analytic expression for the magnetic field in the vicinity of the contact surface is given in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号