首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 389 毫秒
1.
近零磁工作环境是实现无自旋交换弛豫(SERF)原子自旋惯性测量装置的必要条件,但在实际中由于装置内部气室加热和环境温度变化引起的磁屏蔽性能变化是影响系统性能的一个主要因素.基于热-磁耦合理论建立了惯性测量装置的有限元分析模型,对加热条件下磁屏蔽筒内磁场均匀性及其剩余磁场进行了分析.结果表明,气室加热至200℃时,附近温...  相似文献   

2.
原子磁力仪可分为标量磁力仪和矢量磁力仪两大类。标量磁力仪的测量结果与传感器的姿态无关,对平台的机动不敏感。矢量磁力仪能够获得更多的磁场信息,可以实现更精确的磁源定位。目前,共有7种三轴矢量原子磁力仪,测量方法分别为磁场扫描法、磁场旋转调制法、磁场轮流抵消法、磁场投影法、磁场交叉调制法、磁场分立调制法和自旋进动调制法。重点对上述7种三轴矢量原子磁力仪的测量方法进行了整理和分析。  相似文献   

3.
在空间探测过程中,采用高灵敏无自旋交换弛豫(SERF)原子磁强计在行星表面进行磁场测量是原位物质成分分析的有效手段之一。为了提高SERF原子磁强计的磁场测量灵敏度,必须减小外界磁场扰动对其原子自旋SERF态质量的影响,基于SERF原子磁强计的测量原理,设计了一套主动磁补偿系统。首先,通过测量驱动激光光强获得3个方向的磁场信息;在此基础上,控制电流源和线圈主动产生一个与外界磁场扰动大小相同、方向相反的磁场来补偿扰动,以提高原子自旋SERF态的质量;最后,结合现有的SERF原子磁强计实验平台进行了实验验证。实验结果表明,与手动补偿方式相比,采用本文所述的主动磁补偿系统,可以实时跟踪磁场补偿点,降低系统信号的噪声,补偿了外界磁场的扰动,验证了磁强计主动磁补偿技术的有效性,为后续样机的研制奠定了技术基础。  相似文献   

4.
碱金属原子气室是原子陀螺、原子磁力仪和原子钟等量子仪表的核心部件,高性能微小型原子气室是制约上述量子仪表性能的重要因素之一。从理论基础、制造工艺和材料等方面回顾了原子气室的研究进展,对微型气室玻壳精密加工技术、原子气室精确充制技术、耐高温抗弛豫镀膜技术、原子气室后烘处理工艺等相应关键技术进行了分析和讨论,并针对量子仪表微小型、高精度、集成化的发展需求,分析了碱金属原子气室的发展趋势。  相似文献   

5.
SERF(Spin Exchange Relaxation Free)陀螺仪利用电子自旋在惯性空间的定轴性敏感载体转动信息,具有超高精度、小体积的特点,已成为国内外惯性技术领域的研究热点之一.本文介绍了SERF陀螺仅的基本原理,回顾了SERF陀螺仪的国内外发展历程,指出SERF陀螺仪发展需要解决原子气室抗弛豫、核自旋磁场补偿闭环和高精度的信号检测三个关键技术,并展望了SERF陀螺仪在未来潜在的应用前景.  相似文献   

6.
在太空探索中,磁场测量为很多重要的科学研究提供了数据支撑。空间探测器和磁测卫星均多次采用原子磁力仪作为磁场测量的主载荷,原子磁力仪在空间磁场测量中发挥着不可替代的作用。回顾了用于空间磁场测量的原子磁力仪的发展历程,总结了不同种类原子磁力仪的技术特点,分析了空间应用原子磁力仪载荷的发展趋势。  相似文献   

7.
原子气室的工作温度是影响CPT磁力仪灵敏度的重要参数,研究表明,基于品质因子优化后的气室温度大于基于幅值优化后的气室温度。通过设计实验装置,测试多种气压原子气室工作温度与CPT信号品质因子的变化关系,给出幅值、线宽与原子气室温度变化的关系曲线。实验结果表明,与利用幅值优化后气室温度相比,品质因子优化后原子气室的最佳工作温度点可有效提高CPT磁力仪灵敏度。  相似文献   

8.
微型核磁共振陀螺仪能够兼顾高精度、小体积和低功耗等特点,已成为原子陀螺仪的重要研究方向之一。本文在阐述核磁共振陀螺仪工作原理的基础上详细分析了闭环方案、开环方案和低温超导方案几种技术途径的特点,讨论了微型原子气室、微型磁场线圈、无磁加热等关键技术对核磁共振陀螺仪性能的影响,展望了核磁共振陀螺仪的应用前景和发展趋势。  相似文献   

9.
~3He原子磁强计利用~3He核自旋的拉莫尔进动测量磁场,具有高精度、小体积等特点,可以满足未来网络化磁异常探测对高性能磁强计的需求。围绕~3He原子磁强计的技术特点,重点介绍了该磁强计的基本工作原理及其硬件组成,分析了其理论灵敏度,给出了该磁强计的国内外研究情况,最后对该磁强计技术的未来发展进行了展望。  相似文献   

10.
目前,对原子气室内自旋极化率的空间操控与测量已有不少研究,但是对这类研究缺乏系统的分析、整理和综述。通过对文献的梳理,将现有的操控与测量方法分为三类,即光操控/磁测量方法、磁操控/光测量方法和光操控/光测量方法。分别对这三类方法进行了叙述,尤其是对笔者所在小组提出和研究的光操控/光测量方法进行了详细的介绍。该方法采用时空双重调制技术和正交隔离技术,实现了13.7μm线宽的自旋极化率空间操控与测量。此结果不仅远小于之前毫米量级的空间分辨率,而且突破了无扩散干扰距离的限制。基于上述实验进展,对原子气室内自旋极化率操控与测量的空间分辨率理论极限进行了初步分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号