首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
低速风洞旋转流场下滚转振荡动导数试验技术研究   总被引:1,自引:1,他引:1  
介绍了中国航空工业空气动力研究院自主开发的旋转流场下单自由度振荡系统及相应的试验技术。尾旋特性分析及预测时所使用的动导数通常是在常规流场中获得的,测得的动导数没有体现旋转流场的影响。该项试验技术通过在旋转流场中进行强迫振荡运动来获取飞机尾旋过程中的动稳定性导数,实现了对流动的真实模拟。在FL-8风洞中采用某型号飞机的动导模型进行了旋转流场下滚转振荡试验研究,对试验数据进行简单分析。分析结果表明:该系统试验性能稳定,试验数据可靠,可以有效的应用于现代飞机的振荡尾旋和飘叶式尾旋过器的气动力特性研究和预测。  相似文献   

2.
介绍了1.2m风洞攻角达30°的动导数试验装置与测量系统以及在1.2m风洞中对标准动态模型(SDM模型)所作的一系列试验结果。试验的马赫数为0.6~1.2,攻角为0~30°,振动频率为8~14Hz,试验雷诺数为1.2×107~2.3×107/m。试验所得的阻尼导数包括俯仰、偏航、滚转及滚转引起的偏航动导数随马赫数和攻角的变化表现出明显的非线性,而减缩频率的影响并不显著。天平与测试系统的重复性精度小于15%。试验结果与国外文献数据具有很好的一致性。  相似文献   

3.
本文阐述了研究飞机失速/尾旋的重要性和研究尾旋的方法,介绍了哈尔滨空气动力研究所研制的旋转天平试验装置和校准模型的试验结果以及如何应用旋转天平试验数据预测飞机尾旋特性。  相似文献   

4.
提供了利用欧拉方法计算的某改型飞机尾旋时间历程结果,文中比较了使用和没使用洗流时差动导数数据对计算结果的影响,说明洗流时差动导数数据在这种模拟计算中是非常重要的,它使计算结果更合理。  相似文献   

5.
外形短粗、飞行姿态复杂,其动导数量级很小的再入体模型,安装在新研制的尺寸小、厚度薄的整体结构之天平元件上,天平与层支杯相连,由气动活塞推动拨杆,经过拨螺钉撞击模型上的模块并驱使模型作自由振动,从而测量了大攻角(α=0~180°)俯仰、偏航及滚转动导数。10°钝雄模型动校及再人体动导数试验结果与国外类似的数据吻合。  相似文献   

6.
为研究短钝外形飞行器的动稳定特性,基于自由振动动导数试验方法在1.2 m量级亚跨超声速风洞中建立了动导数测量试验技术.通过新设计的弹性铰链和轴承铰链解决了短钝外形飞行器弹性支撑和低频振动模拟问题.利用新建立的试验装置研究了马赫数、迎角、减缩频率对动稳定特性的影响.在短钝外形飞行器气动力特点下,新设计的弹性铰链能够满足模...  相似文献   

7.
在气动院FL-8风洞中,采用旋转流场下单自由度振荡机构进行了旋转流场下大幅滚转运动的动态气动特性实验研究.模型在绕风轴连续旋转的同时进行给定频率和振幅绕体轴的滚转振荡运动,测量了模型的动态气动特性,着重分析了不同运动参数对模型气动特性的影响.结果表明,旋转速度的存在使大幅滚转振荡试验中的滚转力矩和偏航力矩发生平移,同时使滚转力矩和偏航力矩的迟滞特性发生明显的变化.  相似文献   

8.
采用镜像两步法在FL 8风洞中进行了俯仰振荡动导数支架干扰修正实验,实验结果表明:在强迫振荡动导数实验中,支架干扰对动导数实验数据有明显的影响。通过对实验数据进行支架干扰修正,可以进一步提高实验结果的准确性。  相似文献   

9.
旋转天平风洞试验系统主要用于风洞中测定飞机模型在不同姿态角时绕风轴以不同旋转速率作等速旋转状态下的气动特性,为飞机尾旋特性的分析和预测提供必要的气动系数。本文简要介绍了中国空气动力研究与发展中心低速所的旋转天平风洞试验系统的总体方案、试验能力和性能。文中给出了校验模型试验的主要结果,对试验数据的精准度进行了简单的讨论。校验模型试验结果表明,本试验系统给出的旋转状态气动力系数的精准度达到了较高的水平,具备了应用于型号试验和有关气动力研究的基本条件。  相似文献   

10.
基于笛卡尔网格和采用Euler方程基本流场解,通过Riemann不变量摄动,对旋转扰动引起的物面法向速度构建摄动关系,发展了一种超声速旋转导数快速计算方法。文中给出了具体的推导过程,可以看出由此得到的超声速旋转导数,仅与定常欧拉解基本流相关。因此,一旦CFD计算得到定常欧拉解,就可一次性地快速计算出感兴趣的超声速旋转导数。为了验证该计算方法,本文选用国际动导数标准模型Basic Finner算例进行了计算,计算结果与试验数据、文献数据具有很好的一致性,展示出本文方法计算耗时少、精度高、工程实用性强等优点,且该算法基于笛卡尔网格,特别适合复杂气动外形飞行器超声速旋转导数的快速计算。  相似文献   

11.
发动机燃气喷流对高超声速飞行器后体气动热环境有显著的影响,燃气喷流的物理模型对预测飞行器局部热环境有显著影响,为了利用脉冲风洞研究这类影响规律,研制了一套瞬态热喷流供气系统,建立了瞬态热喷流供气系统的工作方法.该系统的核心技术是利用氢氧燃烧驱动路德维希管(Ludwieg tube),提供瞬态热喷流气源.本研究包括以下内容:不同氢氧比例对燃烧产物热力学状态及产生方式的影响;不同点火、破膜方式对气源产生及喷流流场稳定性的影响.本研究提出的热喷流供气系统可以提供满足缩比模型喷流实验所需喷流状态的热气源;可以在50ms内起动工作,满足与脉冲风洞同步工作的要求.  相似文献   

12.
颤振试验技术是研究飞行器颤振特性、评估安全飞行包络线的一项重要试验技术.为了满足颤振试验需要的定马赫数阶梯变速压和定总压线性变马赫数的试验要求,结合2.4m跨声速风洞的特点,有针对性地进行了控制策略设计.主要采用运动规律法和智能分段变PI实现变速压智能控制,应用运动函数实现了线性变马赫数智能控制.结果表明:该流场控制技术满足颤振试验的特殊要求,取得了流场调节过程快速、准确、可靠的试验效果.  相似文献   

13.
针对在风洞闭口试验段对 C919、MA700等民机进行航空声学定位试验的需求,首先采用声衬试验段、波束形成麦克风相位阵列算法、对角移除反卷积方法和声压级积分方法等措施,解决闭口试验段存在的背景噪声较高、气流对麦克风测量干扰问题,然后采用 MA60飞机模型进行了验证性风洞试验。风洞试验结果表明,声衬试验段有利于在闭口试验段内安装传声器相位阵列、传声器线阵等测量设备,同时背景噪声较常规闭口试验段显著降低,降噪量达5~10dB;MA60飞机模型航空声学定位试验结果量级合理、规律正确,主要声源集中在襟翼位置。这表明,在 FL-9风洞闭口试验段建立了航空声学试验环境和噪声源定位试验技术,可以承担机体气动噪声定位、降噪技术验证等民机型号研制急需的航空声学试验。  相似文献   

14.
通过求解轴对称 N-S 方程,对Φ1 m 高超声速风洞马赫数3和6状态下的流场进行了模拟,计算结果与试验数据基本一致,验证了所用数值方法的可信性。在此基础上,对比研究了马赫数3和6状态下采用闭口等直圆截面和开口自由射流两种试验段结构形式的超声速/高超声速风洞在起动条件下的稳态流场性能。结果表明:采用闭口等直圆截面试验段和开口自由射流试验段的流场均匀区内速度场性能指标均满足相关标准要求;马赫数3喷管采用闭口试验段时,沿风洞轴向-300mm~900mm 截面范围内的流场均匀区直径均保持在Φ882mm 以上,均匀区面积较开口试验段增加了约31.57%;马赫数6喷管采用闭口试验段时,均匀区面积比开口试验段仅增加了约8.24%,流场品质略为提高。超声速条件下,闭口试验段的流场均匀区增加明显;但在高超声速条件下,闭口试验段的流场均匀区增加比较有限。  相似文献   

15.
甲烷-空气的二次爆炸流场实验研究   总被引:1,自引:0,他引:1  
为了揭示二次爆炸的产生机制及其影响因素,采用带导管的柱形泄爆装置对向空气中泄爆的过程进行了实验。实验获得了在不同泄爆条件下清晰的时序阴影照片和外流场测点的压力历程。根据实验结果分析了二次爆炸的产生条件,并详细讨论了二次爆炸影响因素在不同泄爆条件的变化,从而分析和解释了二次爆炸强度在相应泄爆条件下的变化规律。  相似文献   

16.
压敏涂料技术是重要的风洞模型表面压力测量技术之一.作者介绍了压敏涂料的研制及该技术应用于风洞试验时的自动化试验图像采集技术、试验数据处理与修正技术及实际应用中的一些经验,给出了在飞机机翼、边条、前缘襟翼、副翼表面,压敏涂料技术与常规测压孔技术测量结果的比较.  相似文献   

17.
2.4m跨声速风洞槽壁试验段调试及流场校测   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了新研制的2.4m跨声速风洞槽壁试验段调试情况及流场校测结果.结果表明:该试验段边界层厚度、消波特性等满足使用需求,具有较大的流场均匀区,在M数为0.30~1.00范围内的核心流场M数分布均方根偏差满足GJB1179-91高速风洞与低速风洞流场品质规范合格指标要求,部分马赫数的均方根偏差达到或接近先进指标要求,可投入型号试验.槽壁试验段的成功研制提高了2.4m跨声速风洞承担大型飞机试验任务的能力,在中国大型飞机工程气动设计中将发挥重要的平台作用.  相似文献   

18.
平面叶栅风洞侧壁附面层引起流道收缩,破坏叶栅流场二维性,扩压叶栅逆压梯度会加剧收缩,且随负荷增加越发显著.针对某高负荷扩压叶栅,研究了影响叶栅吹风试验二维性的因素及不同轴向位置端壁抽吸的改善效果并探索了分布式抽吸.结果表明:常规试验叶栅端壁附面层发展会挤压主流,使其加速,扩压性下降,造成流场失真,总压损失偏差最小达23...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号