首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
It is of great significance to improve the accuracy of turbulence models in shock-wave/ boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development of turbulent kinetic energy in impinging shock-wave/turbulent boundary layer interaction flow at Mach 2.25 is analyzed based on the data of direct numerical simulation(DNS). It is found that the turbulent kinetic energy is amplified by strong shear in the separation zone and the adverse pressure gradient near the separation point. The pressure gradient was non-dimensionalised with local density, velocity, and viscosity. Spalart–Allmaras(S–A) model is modified by introducing the non-dimensional pressure gradient into the production term of the eddy viscosity transportation equation. Simulation results show that the production and dissipation of eddy viscosity are strongly enhanced by the modification of S–A model. Compared with DNS and experimental data, the wall pressure and the wall skin friction coefficient as well as the velocity profile of the modified S–A model are obviously improved. Thus it can be concluded that the modification of S–A model with the pressure gradient can improve the predictive accuracy for simulating the shock-wave/turbulent boundary layer interaction.  相似文献   

2.
The design optimization taking into account the impact of uncertainties favors improving the robustness of the design. A Surrogate-Assisted Gradient-Based(SAGB) method for the robust aerodynamic design optimization of turbomachinery blades considering large-scale uncertainty is introduced, verified and validated in the study. The gradient-based method is employed due to its high optimization efficiency and any one surrogate model with sufficient response accuracy can be employed to quantify the ...  相似文献   

3.
To overcome the drawbacks of current modelling method for aircraft engine state space model, a new method is introduced. The form of state space model is derived by using Talyor series to expand the nonlinear model that is implicit equations and involves many iterations. A partial derivative calculation method for iterations is developed to handle the influence of iterations on parameters. The derivative calculation and the aerothermodynamics calculations are combined in the component level mode...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号