首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Sharp boundaries of small-scale and middle-scale structures of the solar wind are an essential part of a turbulized solar wind. Such boundaries are observed near the Earth’s orbit as sharp and large-amplitude changes of parameters (in particular, ion density) of the solar wind. In this paper, the observed phenomena are briefly described, and an account of their basic properties and specific features is given. Using the kinetic approach, a possible theoretical mechanism is suggested in order to explain some peculiarities in the formation of these structures.  相似文献   

2.
3.
The results of comparison of the characteristics of sharp boundaries of small-scale and medium-scale solar wind structures in the case of their simultaneous observation on widely spaced spacecraft are described. It is shown that even very sharp boundaries, with duration of several seconds or fractions of a second, retain their amplitude and remain very sharp during solar wind propagation to distances of up to a million kilometers.  相似文献   

4.
On the basis of an analysis of the data of multi-satellite observations of magnetic clouds at the path Venus-Earth, the dependence of their geoeffectiveness on the orientation in the ecliptic plane and position relative to the Sun-Earth line is determined in the paper. The cloud parameters were determined on the basis of the model of a force-free cylindrical flux rope. The search for magnetic clouds in the flow of data from the monitoring space vehicle was performed using a special-purpose computer program.  相似文献   

5.
Radio bursts in the frequency range of 100–1500 kHz, recorded in 1997–2000 on the INTERBALL-1 satellite during the solar flares preceding the strong geomagnetic storms with D st < ?100 nT, are analyzed in this paper. The observed long-wave III-type radio bursts of solar origin at frequencies of 1460 and 780 kHz were characterized by large values of the flux S f = 10?15 ?10?17 W/m2 Hz and duration longer than 10 min. The rapid frequency drift of a modulated radio burst continued up to a frequency of 250 kHz, which testified that the exciting agent (a beam of energetic electrons) propagated from the Sun to the Earth. All such flares were characterized by the appearance of halo coronal mass ejections, observed by the LASCO/SOHO, and by the presence of a southward Bz-component of the IMF, measured on the ACE and WIND spacecraft. In addition, shortly after radio bursts, the INTERBALL-1 satellite has recorded the fluxes of energetic electrons with E > 40 keV.  相似文献   

6.
7.
The large and sharp changes of solar wind dynamic pressure, found from the INTERBALL-1 satellite and WIND spacecraft data, are compared with simultaneous magnetic field disturbances in the magnetosphere measured by geosynchronous GOES-8, GOES-9, and GOES-10 satellites. For this purpose, about 200 events in the solar wind, associated with sharp changes of the dynamic pressure, were selected from the INTERBALL-1 satellite data obtained during 1996–1999. The large and sharp changes of the solar wind dynamic pressure were shown to result in rapid variations of the magnetic field strength in the outer magnetosphere, the increase (drop) of the solar wind dynamic pressure always lead to an increase (drop) of the geosynchronous magnetic field magnitude. The value of the geomagnetic field variation strongly depends on the local time of the observation point, reaching a maximum value near the noon meridian. It is shown that the direction of the B z component of the interplanetary magnetic field has virtually no effect on the geomagnetic field variation because of a sharp jump of pressure. The time shift between an event in the solar wind and its response in the magnetosphere at a geosynchronous orbit essentially depends on the inclination of the front of a solar wind disturbance to the Sun-Earth line.  相似文献   

8.
The tensor of permittivity for the system “electron beam - plasma of the interplanetary space” is derived in the approximation of geometrical optics. The problem is one-dimensional; all parameters such as density of the beam and of the solar wind plasma, and the induction of the interplanetary magnetic field are assumed to be dependent only on the distance to the Sun. The beam is generated by an active region during a solar flare, and it is a source of radio bursts of type III in the interplanetary space. The tensor of permittivity was obtained to close field equations by a material equation. On the basis of these equations it becomes possible to study theoretically the amplitude-frequency characteristics of the radio bursts as disturbances of the above-described beam-plasma system.  相似文献   

9.
Using daily and hourly data on solar plasma parameters at the Ulysses spacecraft orbit and at 1 AU it is demonstrated that there is a simple relationship between plasma temperature and density with the heliospheric magnetic field (HMF). A mathematical expression connecting HMF with plasma temperature and density is suggested. Correlation coefficients and regression equations for measured and calculated magnetic fields are presented for the 1990–2009 period according to Ulysses spacecraft data and for 2003–2010 at 1 AU (OMNI database). The roles played by density, temperature, and high-speed solar wind streams in forming the magnetic-field peaks are demonstrated using hourly data of OMNI2 and Ulysses.  相似文献   

10.
Frequency characteristics of disturbances of a one-dimensionally inhomogeneous electron beam-solar wind plasma system are studied in the geometrical optics approximation on the basis of the Maxwell equations closed by the material equation obtained earlier. The corresponding dispersion equation is derived and solved. It is found that resonance interaction of a wave with an electron beam can occur only at two spatial points. Perhaps, such a short-time (point-like) mechanism of the resonance clarifies one of the main problems of physics of electron beams generated by solar flares: their time of existence is much longer than the time following from the previous theoretical estimates of the beam energy loss rate due to radiation.  相似文献   

11.
The character of statistical distributions of the intensity of energetic charged particles, solar wind flux, and the interplanetary magnetic field strength is analyzed using the data obtained by the Voyager 1 and Voyager 2 spacecraft in the distant heliosphere. A comparison of the distributions in the region of crossings of shock wave fronts in 1991 and in 2004 is carried out, and their similarities and differences are discussed.  相似文献   

12.
The results of simultaneous analysis of plasma and magnetic field characteristics measured on the INTERBALL/Tail Probe, WIND and Geotail satellites on March 2, 1996, are presented. During these observations the INTERBALL/Tail Probe crossed the low-latitude boundary layer, and the WIND and Geotail satellites measured the solar wind’s and magnetosheath’s parameters, respectively. The plasma and magnetic field characteristics in these regions have been compared. The data of the Corall, Electron, and MIF instruments on the INTERBALL/Tail Probe satellite are analyzed. Fluctuations of the magnetic field components and plasma velocity in the solar wind and magnetosheath, measured onboard the WIND and Geotail satellites, are compared. The causes resulting in appearance of plasma jet flows in the low-latitude boundary layer are analyzed. The amplitude of magnetic field fluctuations in the magnetosheath for a studied magnetosphere boundary crossing is shown to exceed the magnetic field value below the magnetopause near the cusp. The possibility of local violation of pressure balance on the magnetopause is discussed, as well as penetration of magnetosheath plasma into the magnetosphere, as a result of magnetic field and plasma flux fluctuations in the magnetosheath.  相似文献   

13.
Results of the analysis of 327 sessions of radio occultation on satellite-to-satellite paths are presented. The data are taken in the nighttime polar ionosphere in the regions with latitudes of 67°–88°, and in the period of high solar activity from October 26, 2003 to November 9, 2003. Typical ionospheric changes in the amplitude and phase of decimeter radio waves on paths GPS satellites-CHAMP satellite are presented. It is demonstrated that these data make it possible to determine characteristics of the sporadic E s structures in the lower ionosphere at heights of 75–120 km. Histograms of distribution of the lower and upper boundaries, thickness, and intensity of the E s structures are presented. Dispersion and spectra of amplitude fluctuations of decimeter radio waves caused by small-scale irregularity of the ionospheric plasma are analyzed. The relation of the polar E s structures and intensity of small-scale plasma irregularity to various manifestations of solar activity is discussed. The efficiency of monitoring the ionospheric disturbances caused by shock waves of the solar wind by the radio occultation method on satellite-to-satellite paths is demonstrated.  相似文献   

14.
网络中心战是信息化战争的主要作战样式。信息技术的广泛应用,大大提高了装备作战的能力,同时也对装备建设提出了更新更高的要求。阐述了美军网络中心战的含义与结构组成,分析了美军网络中心战的建设情况、关键技术、作战应用及其发展动向,最后探讨了网络中心战对装备建设的影响。  相似文献   

15.
Poor quality of functioning of GPS during solar flares on December 6 and 13, 2006 is analyzed in this paper. These flares were accompanied by extremely high (unexampled) level of the solar radio emission flux. A comparison is made of these events with the solar flare on October 28, 2003. Statistically reliable experimental evidence is obtained that GPS positioning was partially paralyzed on the sunlit side of the Earth during the strongest bursts of solar radio emission. The obtained results give a serious ground to revise the role played by space weather factors in operation of modern satellite systems and to take these factors into account more carefully, when such systems are designed and exploited.  相似文献   

16.
On the basis of measurements made at Japanese magnetic stations and using GPS satellites for the 12 months of 2003, a comparison of simultaneous variations of three components of the magnetic field and total electron content (TEC) was carried out in the range of the planetary waves period. The correlation analysis has shown that almost synchronous variations exist within this range of periods at the ground-based magnetometer stations and in the TEC measurements both during strong magnetic disturbances and in quiet periods. The strong magnetic disturbances could be considered as a possible independent source of ionospheric variations within the planetary waves range, while the accompanying ionospheric storms could be a possible factor changing the conductivity of the lower ionosphere plasma. In quiet periods, the correlation of magnetic variations and disturbances in TEC is caused by the direct impact of atmospheric planetary waves on the lower ionosphere and can be related to variations of ionospheric currents due to the dynamo mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号