首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Type III-L bursts constitute a class of type III bursts that are intense, complex, and of long duration at hectometric wavelengths. They are often associated with major flares and fast coronal mass ejections. Several observations suggested that the electron beams that produce these complex hectometric emissions could be accelerated and injected in the low or in the middle corona. In this study, we revisit the origin of these bursts by tracing the progression of the events from the low corona to the interplanetary medium. We show that type III-L features are related to sudden changes in the radio emission observed at metric and decametric wavelengths, in particular the onset of new emitting sources at positions that can be at large distances from the flare site.  相似文献   

2.
Using the Clark Lake Radioheliograph data we present direct evidence that type III electron streams propagate in dense coronal streamers. We also present imaging observations of meter-decameter microbursts, which appear to be similar to those observed in hard X-rays. At meter-decameter wavelengths, these microbursts appear to be due to plasma radiation. From observations made with ISSE-3, we discuss the characteristics of hectometer and kilometer wavelength radio bursts. In particular, we show that from studies of type III storms that the exciter electrons propagate along spiral structures, where the density is enhanced and that there is an acceleration of the solar wind. We discuss type II bursts at kilometer wavelengths, compare them with meter type II bursts and discuss their association with interplanetary shocks. We show that the interaction between type III electron streams and shocks at kilometer wavelengths can provide information on the interplanetary shock geometry. Finally, we discuss the possibility that some shock associated (SA) events may be emissions caused by electrons accelerated lower in the atmosphere rather than high in the corona in type II shocks.Recent advances in solar research have resulted from new work on plasma radiation theory, new observations of active regions and flares across the electromagnetic spectrum and the availability of spacecraft in situ measurements of solar ejecta. In this paper, we review some results obtained with the Clark Lake multifrequency radioheliograph at meter-decameter wavelengths and from satellite multifrequency directive observations at hectometer and kilometer wavelengths. We present evidence that type III electrons propagate in dense coronal streamers, and that frequently observed microbursts (presumably of type III) at meter-decameter wavelengths are due to plasma radiation. We discuss observations of hectometer and kilometer type III radio storms which reveal information about active region structures, interplanetary magnetic field configuration, and solar wind acceleration. We also discuss kilometer type II bursts, interactions between type III electrons and interplanetary shocks, and present some new results on shock associated (SA) events.  相似文献   

3.
The comparative study of radiation in the different spectral ranges, including X-ray and radio observations, can establish constraints for the electron acceleration/injection mechanisms. This paper will focus on the activity prior and during the impulsive phase of solar flares. Observations give evidence for electron acceleration prior the impulsive phase. The association between type III groups and hard X-ray bursts becomes closer with increasing starting frequency of the former observed during the impulsive phase. It is shown that pure type III burst groups, when they are X-ray associated, do not correspond to an intense X-ray emission. At the opposite, the type III/V events can be associated with strong X-ray emission. Radioheliograph observations bring constraints on the geometry of the injection/acceleration site.  相似文献   

4.
用Hα色球、射电运动频谱、射电日像和米波、分米波、厘米波段上的七个单频射电总流量的观测资料及地磁记录,对1982年1月22日太阳西边缘的物质抛射事件做了综合分析.用流量变化率曲线讨论了爆发特点.在绝热假设下推得抛射物质团在1.16R附近的内部磁场为12G,总电子数为1038,总能量为7×1029erg.事件的总抛射物质~1014-1015g,总能量~2×1030erg.   相似文献   

5.
Solar radio bursts (SRBs) are the signatures of various phenomenon that happen in the solar corona and interplanetary medium (IPM). In this article, we have studied occurrence of Type III bursts and their association with the Sunspot number. This study confirms that occurrence of Type III bursts correlate well with Sunspot number. Further, using the data obtained using e-CALLISTO network, we have investigated drift rates of isolated Type III bursts and duration of the group of Type III bursts. Since Type II, Type III and Type IV bursts are signatures of solar flares and/or CMEs, we can use the radio observations to predict space weather hazards. In this article, we have discussed two events that have caused near Earth radio blackouts. Since e-CALLISTO comprises more than 152 stations at different longitudes, we can use it to monitor the radio emissions from the solar corona 24 h a day. Such observations play a crucial role in monitoring and predicting space weather hazards within few minutes to hours of time.  相似文献   

6.
Solar radio type IV bursts can sometimes show directivity, so that no burst is observed when the source region in located far from the solar disk center. This has recently been verified also from space observations, at decameter wavelengths, using a 3D-view to the Sun with STEREO and Wind satellites. It is unclear whether the directivity is caused by the emission mechanism, by reduced radio wave formation toward certain directions, or by absorption/blocking of radio waves along the line of sight. We present here observations of three type IV burst events that occurred on 23, 25, and 29 July 2004, and originated from the same active region. The source location of the first event was near the solar disk center and in the third event near the west limb. Our analysis shows that in the last two events the type IV bursts experienced partial cut-offs in their emission, that coincided with the appearance of shock-related type II bursts. The type II bursts were formed at the flanks and leading fronts of propagating coronal mass ejections (CMEs). These events support the suggestion of absorption toward directions where the type II shock regions are located.  相似文献   

7.
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.  相似文献   

8.
本文根据1981年HALE 17590 太阳活动区的观测资料,着重分析了它的射电辐射特性后发现:(1)在光学活动区发展的上升阶段,每串射电爆发的强度也有由弱到强的变化,其频谱由单调谱变成不规则谱和U型谱;(2)对大的耀斑爆发而言,射电爆发的先兆相比X射线爆早。在射电先兆相期间常伴有谱斑增亮和暗条激活等现象;(3)大耀斑爆发的脉冲极大时刻在射电8毫米波段到来最早。   相似文献   

9.
Due to the lack of simultaneous high sensitivity/time resolution observations at mm- cm-λ and m-λ a program on such investigations has been carried out with data obtained by INPE at Itapetinga and by the Astronomical Observatory of Trieste. Preliminary results obtained by comparing mm-wave burst structures with 408, 327 and 237 MHz indicate that i) for majority of major time structures (time scales of the order of 1 sec) observed at 22 GHz bursts, corresponding type III bursts have been observed at 237 MHz, however ii) start times at mm-λ and m-λ are not often coincident at two wavelengths. These observations favour the hypothesis of (a) time dependent acceleration of energetic electrons and (b) burst emission is the response to a multiple injection of energetic electrons.  相似文献   

10.
The Japanese X-ray astronomy satellite Hakucho and Tenma observed the activity of the rapid burster MXB 1730-335 in 1979 and 1983. In the first observation from 8 to 22 August 1979, the activity began with rapidly repetitive type II bursts which are similar to those observed earlier. Then the energy per burst quickly increased and evolved to exhibit a long flat top or roughly trapezoidal shape. In the last phase, burst size became smaller and the activity returned to the short type II burst mode. In the second observation from 5 to 31 August 1983, the burster started to emit a train of bursts which aparently resemble to type I bursts with quasi-periodical occurrence of 74 ~ 90 minutes. In the second phase, there appeared long type II bursts of trapezoidal profiles and exotic long bursts. In the last phase, about 3000 rapidly repetitive short type II bursts were observed. The bursts with shortest intervals exhibited almost periodic features of 16 sec.The type II bursts in both observation evolved to the size E of ~ 6 × 1040 erg that is one order larger than ever observed. They were long bursts (τ ≦ 600 s) of flat topped (trapezoidal) shape and those of exotic profiles. Those type II bursts exhibited some kinds of quasi-periodicities, which implies the vibrations or instabilities of the mass accretion onto the neutron stars. The type I bursts were often observed with/without type II bursts.  相似文献   

11.
We have investigated the source characteristic and coronal magnetic field structure of six impulsive solar energetic particle (SEP) events selected from Wang et al. [Wang, Y.-M., Pick, M., Mason, G.M. Coronal holes, jets, and the origin of 3He-rich particle events. ApJ 639, 495, 2006] and Pick et al. [Pick, M., Mason, G.M., Wang, Y.-M., Tan, C., Wang, L. Solar source regions for 3He-rich solar energetic particle events identified using imaging radio, optical, and energetic particle observations. ApJ 648, 1247, 2006]. Some results are obtained: first, 2 events are associated with wide (≈100°) CMEs (hereafter wide CME events), another 4 events are associated with narrow (?40°) CMEs (hereafter narrow CME events); second, the coronal magnetic field configuration of narrow CME events appear more simple than that of the wide CME events; third, the photospheric magnetic field evolutions of all these events show new emergence of fluxes, while one case also shows magnetic flux cancellation; fourth, the EUV jets usually occurred very close to the footpoint of the magnetic field loop, while meter type III bursts occurred near or at the top of the loop and higher than EUV jets. Furthermore, the heights of type III bursts are estimated from the result of the coronal magnetic field extrapolations.  相似文献   

12.
Initial results of a combined study of electron events using the 3DP experiment on the WIND spacecraftand the Nançay Radioheliograph (NRH) are presented. A total of 57 electron events whose solar release time could be inferred from WIND/3DP observations occurred during NRH observing times. In 40 of them a distinct signature was detected in maps at decimetric and metric wavelengths (dm-m-λ) taken by the NRH. These events are equally distributed among two categories: (1) Electron release together with dm-m-λ bursts of a few minutes duration: these events are also accompanied by decametric-hectometric type III bursts seen by WAVES/WIND. They correspond to the well-known impulsive electron events. (2) Electron release during long duration (several tens of minutes) dm-m-λ emission: the electrons are most often released more than ten minutes after the start of the radio event. In the majority of cases the dm-m-λ radio source changes position, size, and/or intensity near the time of electron release.  相似文献   

13.
本文介绍了太阳L260°活动概况,并计算了黑子群的位置漂移及对应的射电缓变源.北京天文台2.84GHz射电望远镜在该活动区观测到8次特大的射电爆发(流量超过1000s.f.u.),其中4次(1991年5月16日,6月9日,6月11日,8月25日)射电爆发时变曲线十分相似而且这些微波爆发都与Ⅱ型Ⅲ型Ⅳ型米波爆发有良好的对应.可能说明该活动区所对应的日冕在长时间内存在一种磁场位形结构,这种磁场位形结构容易产生日冕物质抛射.   相似文献   

14.
Emissions from solar flares may reveal fast fluctuations, which can be attributed to small-scale injections of energetic electrons. In this paper, we perform numerical calculations of the Hα emission from a flaring atmosphere bombarded by a pulsating electron beam. We assume that the variation of the electron beam flux consists of two components: a fluctuation component and a background component. The results show that the amplitude of Hα fluctuations varies depending on the magnitude of the background flux of the electron beam. In the case of a higher background flux, the Hα fluctuations are more significant than in the case of a lower background flux. This result is compatible with the observations in which the Hα fluctuations appear preferentially near the hard X-ray maximum.  相似文献   

15.
We present observations of flaring active regions with the Very Large Array (V.L.A. at 6 cm and 20 cm wavelengths) and the Westerbork Synthesis Radio Telescope (W.S.R.T. at 6 cm wavelength). These are compared with photospheric magnetograms (Meudon) and with Hα and offband Hα photographs (Big Bear and Ottawa River Solar Observatories). The 6 cm radiation of these active regions marks the legs of dipolar loops which have their footpoints in lower-lying sunspots. The intense, million degree radiation at 6 cm lies above sunspot umbrae in coronal regions where the longitudinal magnetic field strength H? = 600 Gauss and the height above the sunspot umbrae h = 3.5±0.5 × 109 cm. Circularly polarized horseshoe structures at 6 cm ring the sunspot umbrae. The high degree of circular polarization (?c = 95%) of the horseshoes is attributed to gyroresonant emission above sunspot? penumbrae. The 20 cm radiation of these active regions exhibits looplike coronal structures which extend across regions of opposite magnetic polarity in the underlying photosphere. The 20 cm loops are the radio wavelength counterparts of the X-ray coronal loops. We infer semilengths L = 5 × 109 cm, maximum electron temperatures Te(max) = 3 × 106 K, emission measures ∫Ne2dl = 1028 cm?5, and electron densities Ne = 109 cm?3 (or pressures p = 1 dyn cm?2) for the 20 cm bremsstrahlung. A total of eight solar bursts were observed at 6 cm or 20 cm wavelength with second-of-arc angular resolution. The regions of burst energy were all resolved with angular sizes between 5″ and 30″, brightness temperatures between 2 × 107 K and 2 × 108 K, and degrees of circular polarization between 10% and 90%. The impulsive phase of the radio bursts are located near the magnetic neutral lines of the active regions, and between the flaring Hα kernels which mark the footpoints of magnetic loops. In one case there was preburst heating in the coronal loop in which a burst occurred. Snapshot maps at 10 s intervals reveal interesting burst evolution including rapid changes of circular polarization and an impulsive burst which was physically separated from both the preburst radio emission and the gradual decay phase of the burst.  相似文献   

16.
Recent advances have enabled simultaneous Hα and X-ray observations with substantially improved spatial, spectral, and temporal resolution. In this paper we study two events observed as part of a coordinated observing program between the Solar Maximum Mission and Sacramento Peak Observatory: the flares of 1456 UT, 7 May 1980 and 1522 UT, 24 June 1980. Using recently-developed physical models of static flare chromospheres, and corresponding theoretical Hα line profiles, we can distinguish effects of intense nonthermal electron heating from those of high conduction and pressure from the overlying flare corona. Both flares show the signature of intense chromospheric heating by fast electrons, temporally correlated with X-ray light curves at E > 27keV, and spatially associated with X-ray emission sites at E >62; 16 keV. Interpreting the Hα line profile observations using the theoretical Hα line profiles, we infer values of the thick-target input power contained in nonthermal electrons that are observationally indistinguishable (within a factor of 2–3) from those inferred from the X-ray data. Although these events are small, the energy flux values are large: of order 1011 ergs cm?2 s?1 above 20 keV.  相似文献   

17.
In 2001, 2002 and 2003, the Polar spacecraft probed the near equatorial plasma sheet at 9 RE near local midnight. Using the magnetic field observations, the signatures at substorm onsets are studied. Close to the flux pile-up region, the Polar spacecraft readily detects the dipolarization front, especially for pseudo onsets. An event with two distinct onsets has been examined. The signatures are found to be consistent with the multiple-onset model suggested by Russell [Russell, C.T. How northward turnings of the IMF can lead to substorm expansion onsets. Geophys. Res. Lett. 27, 3257–3259, 2000] which is a modified Near-Earth Neutral Line (NENL) model. Another similar event is also examined showing the effects of different Interplanetary Magnetic Field (IMF) conditions upon substorms. Moreover, ground effects can be very weak compared to in situ observations, especially for pseudo onsets, because these signatures appear to be localized and not global.  相似文献   

18.
应用高频多普勒方法对耀斑期间电离层TEC变化的估算   总被引:3,自引:1,他引:2  
通过分析前人对耀斑期间电离层各区域电子密度的变化情况,总结了一个应用耀斑期间的高频多普勒扰动记录估算出层总电子含量变化的方法,并应用这一方法计算了1990年3-6月几次耀斑引起的低电离层总电子含量的变化,同时还与各耀斑对应的最大流量密度进行了比较,并对两者之间的相关情况进行了分析。  相似文献   

19.
对澳大利亚Culgoora天文台射电频谱仪在太阳活动第23周峰年期间记录到的米波Ⅲ型爆发(20~420 MHz),与日冕物质抛射(CME)、Hα耀斑及相关事件进行了统计分析,发现米波Ⅲ型爆发与CME的关系没有Ⅱ、Ⅳ型爆发与CME的关系密切;米波Ⅲ型爆发发生的时间在CME之前25~30 min最多;72%的CME事件伴随长寿命的Hα耀斑.从这些观测特征出发,对米波Ⅲ型爆发、CME和Hα耀斑进行了定性的解释.   相似文献   

20.
The goal is to study parameters of drifting type III bursts, and find out the emission mechanism of these bursts and understand what factors affect instantaneous spectral bandwidth of these bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号