首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of the nature of heat transfer on crystallization from a cooling solution has been investigated. Sodium polymethylacrylate (PMANa) was used to adjust the viscosity of the medium in the desired way. It was shown that the nature of heat transfer influences the crystallization kinetics and that the absence of convection results in enhanced supercooling. These findings corroborate our interpretation of space experiments /1/. The KNO3-H2O-PMANa system is suitable for a detailed analysis of the influence of zero gravity on the nucleation and crystallization processes.  相似文献   

2.
The calculation of two-phase frictional pressure drop (TPFPD) is required by two-phase systems operating under microgravity and reduced gravity. There are a large number of correlations for the TPFPD in tubes under normal gravity. However, it is hard to find out a TPFPD correlation obtained from microgravity and/or reduced gravity conditions, and thus people have to use TPFPD correlations for normal gravity to calculate TPFPD under microgravity and reduced gravity. It is necessary to evaluate the feasibility of such practice. This paper offers a comprehensive review of the TPFPD correlations for normal gravity and an up-to-data survey of the TPFPD experimental study under microgravity and reduced gravity. There are 23 TPFPD correlations for normal gravity reviewed and 135 experimental data under microgravity obtained from the literature. These experimental data are used to evaluate the reviewed TPFPD correlations. It is found that the smallest mean absolute relative deviation (MARD) of the correlations is greater than 34%. Using TPFPD correlations for normal gravity to reduced gravity and microgravity may be acceptable for the first approximation, but correlations intended for microgravity and reduced gravity are needed and more experiments are desired to obtain more data with high accuracy.  相似文献   

3.
空间在轨流体输运双槽道微重力实验装置通过在微重力环境下对开口槽道中的流动进行观察,可以分析研究微重力下流体输运的稳定特性.双槽道形式的实验装置在单次实验中可同时对两种不同截面,不同流量的槽道流动进行观测,同时可有效提升落塔实验效率,减少不同槽道对比实验中的不确定因素.针对双槽道流体实验装置设计的关键问题,例如密封、压力补偿、设备布局等,提出了实验装置的系统结构及落塔实验步骤.在落塔短时微重力环境中,采用氟化液(HFE7500)流体介质,利用本实验装置成功观测到槽道流体输运流动与失稳现象.   相似文献   

4.
The colonization of space will depend on our ability to routinely provide for the metabolic needs (oxygen, water, and food) of a crew with minimal re-supply from Earth. On Earth, these functions are facilitated by the cultivation of plant crops, thus it is important to develop plant-based food production systems to sustain the presence of mankind in space. Farming practices on earth have evolved for thousands of years to meet both the demands of an ever-increasing population and the availability of scarce resources, and now these practices must adapt to accommodate the effects of global warming. Similar challenges are expected when earth-based agricultural practices are adapted for space-based agriculture. A key variable in space is gravity; planets (e.g. Mars, 1/3 g) and moons (e.g. Earth's moon, 1/6 g) differ from spacecraft orbiting the Earth (e.g. Space stations) or orbital transfer vehicles that are subject to microgravity. The movement of heat, water vapor, CO2 and O2 between plant surfaces and their environment is also affected by gravity. In microgravity, these processes may also be affected by reduced mass transport and thicker boundary layers around plant organs caused by the absence of buoyancy dependent convective transport. Future space farmers will have to adapt their practices to accommodate microgravity, high and low extremes in ambient temperatures, reduced atmospheric pressures, atmospheres containing high volatile organic carbon contents, and elevated to super-elevated CO2 concentrations. Farming in space must also be carried out within power-, volume-, and mass-limited life support systems and must share resources with manned crews. Improved lighting and sensor technologies will have to be developed and tested for use in space. These developments should also help make crop production in terrestrial controlled environments (plant growth chambers and greenhouses) more efficient and, therefore, make these alternative agricultural systems more economically feasible food production systems.  相似文献   

5.
The creep of polycrystalline Hg2X2 (where X = Cl, Br, J) under the terrestrial and space conditions is studied in the present experiment. The authors suppose that the creep of the Hg2X2 cylindrical sample can be studied by the help of the theory of micropolar (non-Newtonian) fluids. In accordance with this theory we obtain the flux of fluid through any cross-section as functions of the radius, viscosity coefficients, the gradient of pressure and the gravity acceleration. In this paper a comparison of the theoretical results for normal and zero- gravity conditions is given. It is shown that the annealing of materials having a broad region of plasticity under microgravity conditions can lead to great improvement in optical as well as mechanical qualities of the crystal. Technical aspects of the experiment are also described.  相似文献   

6.
微重力下相变储能单元融化过程数值模拟   总被引:2,自引:0,他引:2  
为探究微重力环境中,通过肋片强化了传热的相变储能单元中相变材料融化过程,通过数值模拟方法探究了微重力作用时相变材料融化过程中传热特性。通过地面实验与重力作用下数值模拟结果对比验证数值模拟方法的准确性,对比重力和微重力作用2种情况下数值模拟结果以揭示微重力环境中相变材料融化过程的特性。结果表明,当相变储能单元受微重力作用时,相变材料融化速率明显下降,热量主要通过热传导传递,融化的相变材料从顶端膨胀溢出向空间扩散,局部低温区域在相变储能单元中上部。   相似文献   

7.
根据近年红外材料在空间生长的研究概况,分析了涵盖熔体、气相、液相外延和分子束外延等生长方法及各个方法生长红外材料的基本原理,在地面生长遇到的问题,以及在空间微重力环境中进行红外材料生长的优势.同时基于中国利用熔体法在天宫二号上已经进行的ZnTe:Cu晶体的空间生长科学实验及地基实验结果,通过对空间和地面实验结果进行对比,提出了在超高真空环境下,利用分子束外延方式生长高性能、大尺寸红外材料的可能性,以及未来在空间微重力条件下进行红外材料生长的研究方向及具体应用.   相似文献   

8.
Calcium signaling in plant cells in altered gravity.   总被引:5,自引:0,他引:5  
Changes in the intracellular Ca2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus-response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80th, a review highlighting the performed research and the possible significance of such Ca2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension --> alterations in the physicochemical properties of the membrane --> changes in membrane permeability, --> ion transport, membrane-bound enzyme activity, etc. --> metabolism rearrangements --> physiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca2+ messenger system. Changes in Ca2+ influx/efflux and possible pathways of Ca2+ signaling in plant cell biochemical regulation in altered gravity are discussed.  相似文献   

9.
采用VOF (Volume of Fluid)多相流模型, 通过用户自定义函数UDF (User Defined Function)实现相变过程中质量和能量的输运, 对微重力条件下尺寸为10mm × 10mm × 25mm的矩形通道的池沸腾现象进行数值模拟, 得到了微重力及常重力作用下单个气泡生长特性的差异. 模拟结果表明, 微重力条件下气泡周围的流线与温度场的分布有显著差异; 由于表面张力作用, 微重力下的气泡脱离特性与常重力下不同; 在微重力条件下, 气泡直径的变化比较复杂, 并与重力加速度的大小有关; Marangoni流对微重力下的流动影响很大, 使换热系数波动, 而且波动的幅度随重力加速度的减小而增大.   相似文献   

10.
A closed aquatic ecosystem (CAES) was developed to study the effects of microgravity on the function of closed ecosystems aboard the Chinese retrieved satellite and on the spacecraft SHENZHOU-II. These systems housed a small freshwater snail (Bulinus australianus) and an autotrophic green algae (Chlorella pyrenoidosa). The results of the test on the satellite were that the concentration of algae changed little, but that the snails died during the experiments. We then sought to optimize the function of the control system, the cultural conditions and the data acquisition system and carried out an experiment on the spacecraft SHENZHOU-II. Using various sensors to monitor the CAES, real-time data regarding the operation of the CAES in microgravity was acquired. In addition, an on-board 1g centrifuge was included to identify gravity-related factors. It was found that microgravity is the major factor affecting the operation of the CAES in space. The change in biomass of the primary producer during each day in microgravity was larger than that of the control groups. The mean biomass concentration per day in the microgravity group decreased, but that of the control groups increased for several days and then leveled off. Space effects on the biomass of a primary producer may be a result of microgravity effects leading to increasing metabolic rates of the consumer combined with decreases in photosynthesis.  相似文献   

11.
All life on earth is accustomed to the presence of gravity. When gravity is altered, biological processes can go awry. It is of great importance to ensure safety during a spaceflight. Long term exposure to microgravity can trigger detrimental physiological responses in the human body. Fluid redistribution coupled with fluid loss is one of the effects. In particular, in microgravity blood volume is shifted towards the thorax and head. Sympathetic nervous system-induced vasoconstriction is needed to maintain arterial pressure, while venoconstriction limits venous pooling of blood prevents further reductions in venous return of blood to the heart. In this paper, we modify an existing one dimensional blood flow model with the inclusion of the hydrostatic pressure gradient that further depends on the gravitational field modified by the oblateness and rotation of the Earth. We find that the velocity of the blood flow VB is inversely proportional to the blood specific volume d, also proportional to the oblateness harmonic coefficient J2, the angular velocity of the Earth ωE, and finally proportional to an arbitrary constant c. For c = −0.39073 and ξH = −0.5 mmHg, all orbits result to less blood flow velocities than that calculated on the surface of the Earth. From all considered orbits, elliptical polar orbit of eccentricity e = 0.2 exhibit the largest flow velocity VB = 1.031 m/s, followed by the orbits of inclination i = 45°and 0°. The Earth’s oblateness and its rotation contribute a 0.7% difference to the blood flow velocity.  相似文献   

12.
Although it has been suggested that microgravity might affect drug absorption in vivo, drug permeability across epithelial barriers has not yet been investigated in vitro during modelled microgravity. Therefore, a cell culture/diffusion chamber was designed specifically to accommodate epithelial cell layers in a 3D-clinostat and allow epithelial permeability to be measured under microgravity conditions in vitro with minimum alteration to established cell culture techniques. Human respiratory epithelial Calu-3 cell layers were used to model the airway epithelium. Cells grown at an air interface in the diffusion chamber from day 1 or day 5 after seeding on 24-well polyester Transwell cell culture inserts developed a similar transepithelial electrical resistance (TER) to cells cultured in conventional cell culture plates. Confluent Calu-3 layers exposed to modelled microgravity in the 3D-clinostat for up to 48 h maintained their high TER. The permeability of the paracellular marker 14C-mannitol was unaffected after a 24 h rotation of the cell layers in the 3D-clinostat, but was increased 2-fold after 48 h of modelled microgravity. It was demonstrated that the culture/diffusion chamber developed is suitable for culturing epithelial cell layers and, when subjected to rotation in the 3D-clinostat, will be a valuable in vitro system in which to study the influence of microgravity on epithelial permeability and drug transport.  相似文献   

13.
Modelling of the cometary coma with respect to the distribution of dust particles within the coma and tail have been performed by a number of authors /1,2,3/. Applications of the Divine model using a program coded for the Giotto DIDSY sensors have also been made to calculate expected sensor response of the instrument and spacecraft impact rates /4/. For a chosen mass of ~ 10?10g we use the Divine Reference model /1/ to investigate the effect on the mass envelope of i) a velocity spread in dust particle ejection; and ii) a variation in the particle type. The results show that effects i) and ii) lead to a smoothing-out of the anticipated peak flux at an envelope boundary. A conceptual model to follow the formation and development of dust jets is also presented and effects illustrated for various nucleus rotation periods.  相似文献   

14.
Protein crystals, grown under reduced gravity conditions, are either superior or inferior in their structural perfection than their Earth-grown counterparts. A reduction of the crystals' quality due to low-gravity effects on the growth processes cannot be understood from existing models. In this paper we put forth a rationale which predicts either advantages or disadvantages of microgravity growth. This rationale is based on the changes in the effective solute and impurity supply rates in microgravity and their effects on the intrinsic growth rate fluctuations that arise from the coupling of bulk transport to nonlinear interfacial kinetics and cause severe inhomogeneities. Depending on the specific diffusivity and kinetic coefficient of a protein and the impurities in the solution, either transport enhancement through forced flow or transport suppression under reduced gravity can result in a reduction of the kinetic fluctuations and, thus, growth with higher structural perfection. Investigating this mechanism of microgravity effects, we first demonstrate a one-to-one correspondence between these fluctuations, that are due to the bunching of growth steps, and the formation of defects in the crystals. We have confirmed the forced flow aspects of this rationale in ground-based experiments with lysozyme utilizing flowing solutions with varying, well characterized impurity contents.  相似文献   

15.
根据实践十号(SJ-10)科学卫星导线特性箱有效载荷的地面低压模拟实验,通过搭建低压微重力模拟实验台,研究了典型低压弱浮力(3kPa)环境下不同绝缘层种类、厚度和过载电流对导线绝缘层着火先期特性的影响.实验获得了导线绝缘层着火先期的温升特性和烟气析出特性,并根据对比常压(1atm)下绝缘层着火先期特性的结果,初步预测了微重力条件下卫星在轨飞行绝缘层的着火先期特性,低压实验结果为SJ-10卫星空间实验工况优选提供了重要依据.   相似文献   

16.
A flight experiment, ASTROCULTURE(TM)-1 (ASC-1), to evaluate the operational characteristics and hardware performance of a porous tube nutrient delivery system (PTNDS) was flown on STS-50 as part of the U.S. Microgravity Laboratory-1 mission, 25 June to 9 July, 1992. This experiment is the first in a series of planned ASTROCULTURE(TM) flights to validate the performance of subsystems required to grow plants in microgravity environments. Results indicated that the PTNDS was capable of supplying water and nutrients to plants in microgravity and that its performance was similar in microgravity to that in 1g on Earth. The data demonstrated that water transfer rates through a rooting matrix are a function of pore size of the tubes, the degree of negative pressure on the 'supply' fluid, and the pressure differential between the 'supply' and 'recovery' fluid loops. A slightly greater transfer rate was seen in microgravity than in 1g, but differences were likely related to the presence of hydrostatic pressure effects at 1g. Thus, this system can be used to support plant growth in microgravity or in partial gravity as on a lunar or Mars base. Additional subsystems to be evaluated in the ASTROCULTURE(TM) flight series of experiments include lighting, humidity control and condensate recovery, temperature control, nutrient composition control, CO2 and O2 control, and gaseous contaminant control.  相似文献   

17.
Numerous spaceflight experiments have noted changes in the roots that are consistent with hypoxia in the root zone. These observations include general ultrastructure analysis and biochemical measurements to direct measurements of stress specific enzymes. In experiments that have monitored alcohol dehydrogenase (ADH), the data shows this hypoxically responsive gene is induced and is associated with increased ADH activity in microgravity. These changes in ADH could be induced either by spaceflight hypoxia resulting from inhibition of gravity mediated O2 transport, or by a non-specific stress response due to inhibition of gravisensing. We tested these hypotheses in a series of two experiments. The objective of the first experiment was to determine if physical changes in gravity-mediated O2 transport can be directly measured, while the second series of experiments tested whether disruption of gravisensing can induce a non-specific ADH response. To directly measure O2 bioavailability as a function of gravity, we designed a sensor that mimics metabolic oxygen consumption in the rhizosphere. Because of these criteria, the sensor is sensitive to any changes in root O2 bioavailability that may occur in microgravity. In a KC-135 experiment, the sensor was implanted in a moist granular clay media and exposed to microgravity during parabolic flight. The resulting data indicated that root O2 bioavailability decreased in phase with gravity. In experiments that tested for non-specific induction of ADH, we compared the response of transgenic Arabidopsis plants (ADH promoted GUS marker gene) exposed to clinostat, control, and waterlogged conditions. The plants were grown on agar slats in a growth chamber before being exposed to the experimental treatments. The plants were stained for GUS activity localization, and subjected to biochemical tests for ADH, and GUS enzyme activity. These tests showed that the waterlogging treatment induced significant increases in GUS and ADH enzyme activities, while the control and clinostat treatments showed no response. This work demonstrates: (1) the inhibition of gravity-driven convective transport can reduce the O2 bioavailability to the root tip, and (2) the perturbation of gravisensing by clinostat rotation does not induce a nonspecific stress response involving ADH. Together these experiments support the microgravity convection inhibition model for explaining changes in root metabolism during spaceflight.  相似文献   

18.
The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters?

If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport?

Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception.

Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.  相似文献   


19.
Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field.  相似文献   

20.
Outgassing from materials as well as deliberate gaseous and liquid releases create contaminant clouds around spacecraft that can degrade both instrumentation and measurements. This paper describes a new method for estimating outgassing water vapor concentrations around space vehicles. Water vapor ions measured in the course of a rocket experiment performed at Eglin AFB, Florida, on December 12, 1980 at 2311 UT are utilized to demonstrate the technique. The H2O concentration near the payload's surface is calculated using the rate coefficient for the fast charge transfer process, O+ + H2O + H2O+ + O, the source of the observed water vapor ions. It is found that the measured H2O+ ions were produced within 3–4 cm of the sampling plate's surface and that the average H2O pressure over this distance was relatively constant on ascent at 8 × 10?6 torr, within a factor two, implying a steady outgassing rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号