首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The thermal emission from the dust coma of a comet can be analyzed to yield the flux and size distribution of the dust grains and the relative abundance of silicate and absorbing grains.  相似文献   

2.
The large beam size of the Infrared Astronomy Satellite (IRAS) focal plane detector array is well suited to measuring the low level thermal emission from cometary dust. Eight comets discovered in 1983 and nine previously known periodic comets were observed by IRAS during its ten month active lifetime. Dust production rates are derived for a wide range of heliocentric distances. Grain properties are inferred from application of simple models to the long wavelength spectral energy distribution.  相似文献   

3.
A comet nucleus considered as an aggregate of interstellar dust would produce a mist of very finely divided (radius ~ 0.01 μm) particles of carbon and metal oxides accompanying the larger dust grains. These small particles which are very abundant in the interstellar dust size spectrum would provide substantial physical effects because of their large surface area. They may show up strongly in particle detectors on the Halley probes. A strong basis for serious consideration of these particles comes from the other evidence that interstellar dust grains are the building blocks of comets; e.g. (1) the explanation of the “missing” carbon in comets; (2) The S2 molecule detection which suggests that the comet solid ice materials have been previously subjected to ultraviolet radiation (as are interstellar grains) before aggregation into the comet; (3) the predicted dust to gas ratio.  相似文献   

4.
A preliminary analysis of infrared observations of comets P/Crommelin and P/Tempel 1 is presented. Comet P/Crommelin was observed from UKIRT over the range 1–20 micron, using standard filters. From the shape of the thermal emission spectrum, the temperature of the dust grains is estimated (T = 314 ± 3344K) and also the dust production rate (1.3 × 105gs?1). Comet P/Tempel 1 was observed with the Infrared Astronomical Satellite (IRAS). The emission is found to be considerably extended and there is also evidence for temperature variation of the dust grains as indicated by the 12 to 25 micron flux ratio.  相似文献   

5.
The principal observational properties of silicate core-organic refractory mantle interstellar dust grains in the infrared at 3.4 microns and at 10 microns and 20 microns are discussed in terms of the cyclic evolution of particles forming in stellar atmospheres and undergoing subsequent accretion, photoprocessing and destruction (erosion). Laboratory plus space emulation of the photoprocessing of laboratory analog ices and refractories are discussed. The aggregated interstellar dust model of comets is summarized. The same properties required to explain the temperature and infrared properties of comet coma dust are shown to be needed to account for the infrared silicate and continuum emission of the beta Pictoris disk as produced by a cloud of comets orbiting the star.  相似文献   

6.
考虑了地球附近的彗星、行星环、行星际介质等空间尘埃等离子体环境中尘埃颗粒的充电问题.应用典型的空间尘埃等离子体参数,计算了不同种类的尘埃颗粒,以及不同等离子体成分下等离子体中尘粒的平衡电势,得到了尘埃颗粒的平衡电势与尘埃等离子体成分、温度,及其他等离子体参数之间的相互关系.  相似文献   

7.
Molecular elemental and isotopic abundances of comets provide sensitive diagnostics for models of the primitive solar nebula. New measurements of the N2, NH and NH2 abundances in comets together with the in situ Giotto mass spectrometer and dust analyzer data provide new constraints for models of the comet forming environment in the solar nebula. An inventory of nitrogen-containing species in comet Halley indicates that NH3 and CN are the dominant N carriers observed in the coma gas. The elemental nitrogen abundance in the gas component of the coma is found to be depleted by a factor approximately 75 relative to the solar photosphere. Combined with the Giotto dust analyzer results for the coma dust component, we find for comet Halley Ngas + dust approximately 1/6 the solar value. The measurement of the CN carbon isotope ratio from the bulk coma gas and dust in comet Halley indicates a significantly lower value, 12C/13C = 65 +/- 9 than the solar system value of 89 +/- 2. Because the dominant CN carrier species in comets remains unidentified, it is not yet possible to attribute the low isotope ratio predominantly to the bulk gas or dust components. The large chemical and isotopic inhomogeneities discovered in the Halley dust particles on 1 mu scales are indicative of preserved circumstellar grains which survived processing in the interstellar clouds, and may be related to the presolar silicon carbide, diamond and graphite grains recently discovered in carbonaceous chondrites. Less than 0.1% of the bulk mass in the primitive meteorites studied consists of these cosmically important grains. A larger mass fraction (approximately 5%) of chemically heterogeneous organic grains is found in the nucleus of comet Halley. The isotopic anomalies discovered in the PUMA 1 Giotto data in comet Halley are probably also attributable to preserved circumstellar grains. Thus the extent of grain processing in the interstellar environment is much less than predicted by interstellar grain models, and a significant fraction of comet nuclei (approximately 5%) may be in the form of preserved circumstellar matter. Comet nuclei probably formed in much more benign environments than primitive meteorites.  相似文献   

8.
The properties of dust ejecta from Comet Halley are studied on the basis of (a) evidence from the comet's past apparitions and (b) analogy with recent, physically similar comets. Specifically discussed are the light curve and spectrum, discrete phenomena in the head, the physical properties of the nucleus (size, albedo, rotation, surface temperature, and morphology), and an interaction between the nucleus and dust atmosphere. Also reviewed are constraints on the size and mass distributions of dust particles, information on submicron-size and submillimeter-size grains from the comet's dust tail and antitail, and the apparent existence of more than one particle type. Similarities between the jet patterns of Halley and the parent comet of the Perseid meteor stream are depicted, and effects of the surface heterogeneity (discrete active regions) on the dust flow are assessed. Current dust models for Halley are summarized and the existence of short-term variations in the dust content in the comet's atmosphere is suggested.  相似文献   

9.
A set of nominal model parameters for P/Halley is derived from its light curve and spectra. In those cases where Halley observations are not sufficient, the average value derived from a large set of other comets has been used, or data from comet Bennett, Halley's best analogue has been taken. The derived parameters include nucleus mass, size, density, albedo, rotation period, axial inclination, and surface temperature, the composition of the parent molecules, the total gas and dust production rates, distributions for the dust size and bulk density as well as various other parameters.  相似文献   

10.
11.
The evidence that living organisms were already extant on the earth almost 4 Gyr ago and that early bombardment by comets and asteroids created a hostile environment up to about this time has revived the question of how it was possible for prebiotic chemical evolution to have provided the necessary ingredients for life to have developed in the short intervening time. The actual bracketed available temporal space is no more than 0.5 Gyr and probably much less. Was this sufficient time for an earth-based source of the first simple organic precursor molecules to have led to the level of the prokaryotic cell? If not, then the difficulty would be resolved if the ancient earth was impregnated by organic molecular seed from outer space. Curiously, it seems that the most likely source of such seeds was the same a one of the sources of the hostile enviroment, namely the comets which bombarded the earth. With the knowledge of comets gained by the space missions it has become clear that a very large fraction of the chemical composition of comet nuclei consists of quite complex organic molecules. Furthermore it has been demonstrated that comets consist of very fluffy aggregates of interstellar dust whose chemistry derives from photoprocessing of simple ice mixtures in space. Thus, the ultimate source of organics in comets comes from the chemical evolution of interstellar dust. An important and critical justification for assuming that interstellar dust is the ultimate source of prebiotic molecular insertion on the earth is the proof that comets are extremely fluffy aggregates, which have the possibility of breaking up into finely divided fragments when the comet impacts the earth's atmosphere. In the following we will summarize the properties of interstellar dust and the chemical and morphological structure of comets indicated by the most recent interpretations of comet observations. It will be shown that the suitable condition for comets having provided abundant prebiotic molecules as well as the water in which they could have further evolved are consistent with theories of the early earth environment.  相似文献   

12.
An early high-temperature phase of the protosolar accretion disk is implied by at least three different telltales in chondrites and confirmed by peculiarities in the dust grains of comet Halley. The existence this high-temperature phase implies a large accretion rate hence a massive early disk. This clarifies the origin of the Kuiper Belt and of the Oort cloud, those two cometary populations of different symmetry that subsist today. Later, when the dust sedimented and was removed from the thermal equilibrium with the gas phase, a somewhat lower temperature of the disk explains the future planets' densities as well as the location beyond 2.6 AU of the carbonaceous chondrite chemistry. This lower temperature remains however large enough to require an exogenous origin for all carbon and all water now present in the Earth. The later orbital diffusion of planetesimals, which is required by protoplanelary growth, is needed to explain the origin of the terrestrial biosphere (atmosphere, oceans, carbonates and organic compounds) by a veneer mostly made of comets.  相似文献   

13.
We have calculated the vertical structure of planetary dust rings as it results from a balance between an electrostatic force on the dust grains and the vertical component of the gravitational force from the central planet. The electrostatic force results from the charging of the dust grains by the ambient plasma and a large scale electric field due to a shielding electric field and the resulting vertical dust distribution are strongly dependent on dust size, dust and plasma density, plasma temperature and plasma ion type. The dust density distribution has a different dependence on these parameters in tenuous and in dense dust rings. We solve the relevant equations numerically and also by linearization in the limiting cases of tenuous or dense rings. Our results indicate that the effects treated in this paper may be important in both Jupiter's and Saturn's rings.  相似文献   

14.
Images obtained by the Miniature Integrated Camera and Imaging Spectrometer (MICAS) experiment onboard the Deep Space 1 spacecraft which encountered comet 19P/Borrelly on September 22nd 2001 show a dust coma dominated by jets. In particular a major collimated dust jet on the sunward side of the nucleus was observed. Our approach to analyse these features is to integrate the observed intensity in concentric envelopes around the nucleus. The same procedures has been used on the Halley Multicolour Camera images of comet 1P/Halley acquired on March 14th 1986. We are able to show that at Borrelly the dust brightness dependence as a function of radial distance is different to that of Halley. At large distances both comets show constant values as the size of the concentric envelopes increases (as one would expect for force free radial outflow). For Halley the integral decreases as one gets closer to the nucleus. Borrelly shows opposite behaviour. The main cause for Halley's intensity distribution is either high optical thickness or particle fragmentation. For Borrelly, we have constructed a simple model of the brightness distribution near the nucleus. This indicates that the influence of deviations from point source geometry is insufficient to explain the observed steepening of the intensity profile close to the nucleus. Dust acceleration or fragmentation into submicron particles appear to be required. We also estimate the dust production rate of Borrelly with respect to Halley and compare their dust to gas ratios.  相似文献   

15.
Solar wind particles, especially H, C, N, O, S, and P-ions, may undergo specific chemical reactions with gaseous or solid matter of comets when in the energy region of a few 10 to some eV. Each component of the solar wind, even if not chemically reactive itself, creates a multiplicity of energetic secondary particles by knock-on processes with the cometary matter. These are responsible for the majority of the so called “hot” chemical processes. Endothermic reactions with high activation energy and atom molecule interactions are possible and may add to the classical exothermic ion-molecule or radical reactions. Other sources of hot atoms or ions in comets are: cosmic rays, acceleration or pick-up processes and turbulences in comae and gas or dust tails, and photon absorption induced dissociation. The products of hot chemical reactions, short period comets experience on their orbits, add to those formed in the individual component ice or dust grains by strong fluxes of energetic particles in times prior to the accretion to a comet.  相似文献   

16.
Based on the Maxwell-Garnet expression for the optical constant of heterogeneous material, the temperature of grain consisting of homogeneous matrix and small sized impurity can be examined. It is found that the heterogeneous grain model can explain the evidence observed in the comets, i.e. (i) higher production rate of water molecules at large solar distance due to sublimation from water-ice with magnetite inclusions, and (ii) elevated color temperature, which frequently coexists with a 10 μm-silicate peak, as the thermal emission of obsidian contaminated by small magnetite inclusions.  相似文献   

17.
Interaction of the charged particles of a plasma with a solid body is an old problem which has been investigated under various conditions, in particular by the authors in several papers. However, the electric potential of the grains may be more sensitive than expected to the physical state of grain matter and the physical parameters of plasmas in the solar system. Using a new model accounting for porosity, a characteristic feature of grains observed in the solar system, we have investigated the secondary electron emission under electron impact for porous materials. The conclusion is that porosity has a significant influence on the rate of electron ejection. It follows that the floating potential of porous grains can be different from that of grains made of bulk material, with consequences for grain dynamics in the environment of planets or comets.  相似文献   

18.
The analysis of interplanetary dust shows that the majority of particles in out-of-ecliptic regions comes from comets and also that near solar dust, in the ecliptic regions, results most probably largely from comets. The intense radiation flux in the solar vicinity is expected to cause strong modifications in the material composition and surface structure of interplanetary dust particles and hence the analysis of near solar dust provides interesting insights into the evolution of meteoritic, especially cometary materials. Because of the lack of in-situ measurements our present knowledge concerning these processes derives from remote sensing, i.e. observations of the solar F-corona. In particular these are observations of albedo, polarization and colour temperature given in terms of average particle properties. For example the analysis of near infra-red F-corona data points to the existence of a strong component of irregularly structured silicate particles, most probably of cometary origin. The data may indicate a subsequent sublimation of different particles or different constituents of the particles. Here we compare particle properties derived from F-corona observations with model calculations of single particle properties and discuss perspectives of future analysis of cometary dust in the interplanetary cloud.  相似文献   

19.
Dust rings have been observed around each of the giant planets and may also exist around Mars. The particles comprising these rings have short lifetimes due to a number of processes including exospheric and plasma drag, Poynting-Robertson drag, sputtering, collision with other circumplanetary particles, and the Lorentz force for charged grains. The supply of dust is maintained by collisions between macroscopic ring particles and bombardment of moons and ring particles by interplanetary impactors. All of the processes that act to remove or alter the circumplanetary dust grains are functions of particle size, so the initial size distribution of the grains released from an impact onto a moon or ring particle is modified. The size distribution of the impact ejecta can be described by a power-law of the form n(r)drrqdr where n(r)dr is the number of particles in the size range [r,r + dr] and q is the power-law index. For hypervelocity impact excavation, q ≈ 3.5. Drag acts more efficiently on smaller grains resulting in a reduction in q of 1. Other dynamical processes can lead to particle-size dependent collision rates with other circumplanetary objects. These processes can lead to local steepening of the size distribution (increase in q) and to truncation of the dust size distribution to a narrow range of sizes.  相似文献   

20.
Empirical evidence of the accretion temperature for undifferentiated meteorites coming from the asteroid belt, combined with any reasonable temperature gradient extending from the asteroid belt to the Earth's zone, suggests that the Earth accreted from very hot dust grains that were degassed from all volatile elements and depleted in labile compounds. Isotopic evidence from the atmospheric noble gases also shows that no primary atmosphere has survived on the Earth. The only possible source for the atmosphere and the oceans is therefore the cometary bombardment that is predicted as the inescapable consequence of the formation of the giant planets. This implies that comets are the only source of organic carbon, nitrogen and water, hence of the total biosphere of the Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号