共查询到20条相似文献,搜索用时 0 毫秒
1.
W. M. Alexander J. A. M. McDonnell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(12):185-187
The two layer dust shield on the GIOTTO Halley Mission is constructed in a meteoroid bumper configuration. The dust shield is instrumented so that parameters associated with the hypervelocity collision of cometary particles on the exposed surface can be determined. A multisensor detector array provides simultaneous sensing of the momentum exchange of particles impacting and subsequently penetrating the outer layer of the dust shield. Current knowledge of momentum exchange during hypervelocity impact relative to the GIOTTO Halley Mission and the dust shield experiment is reviewed. The sensors used for determination of momentum exchange exhibit a functional dependence on projectile velocity leading to an enhancement of the sensor signal as the relative impact velocity increases. The GIOTTO Mission provides a very unique opportunity to obtain hypervelocity momentum exchange information at a known impact velocity. Therefore, with the dust experiment, a determination of the velocity index for both momentum and multilayered penetration sensor is possible. Results of analysis of analytical and laboratory studies indicate that the velocity index for hypervelocity impact is approximately 2.0 at the 68 km/sec encounter impact velocity of the GIOTTO Mission. A clear determination of the size and mass distribution of the cometary dust near the comet will be possible from the in-situ measurement of the DIDSY GIOTTO experiment. 相似文献
2.
3.
J.M. Bosqued Yu.I. Galperin R.A. Kovrazhkin Yu.N. Ponomarev H. Rème J.A. Sauvaud V.N. Angarov A. Gladishev A.K. Kuzmin T.M. Muliarchik J.A. Sauvaud 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(7):81-85
The CESR Toulouse - IKI Moscow particle instrument package aboard the AUREOL-3 satellite consists of a complete set of charged particle spectrometers which measure electron and ion fluxes from 15 eV to 25 keV in 128 steps and in 11 directions. In addition, 4 channel spectrometers (2 electron and 2 ion channels in parallel) allow high time resolution measurements (up to 10 msec) with onboard calculation of auto and cross correlation functions. For higher energies (40 – 280 keV), solid-state spectrometers are used to measure electron and proton fluxes in 4 channels in parallel. In addition, two Geiger counters are used for the determination of the trapping boundaries. Two mass-energy ion spectrometers (1 to 32 A.M.U., 0.02 – 15 keV) are placed with viewing angles which allow a distinction between nearly isotropic auroral proton precipitation and conical beams accelerated in the auroral ionosphere. Auroral and airglow photometry is performed aboard the AUREOL-3 satellite by a set of 3 parallel directed photometers with tiltable interference filters for 6300 Å, 4278 Å and Doppler shifte Hβ emissions. Various modes of energy, angular and mass scanning, correlation function calculation and various Soviet and French telemetry regimes provide the possibility of choosing the sequences of measurements according to particular experimental programs along the orbit. Finally, examples of data from inflight measurements using the above instruments are presented and briefly discussed, showing several interesting features. 相似文献
4.
D.J. Gardner I. Collier N.R.G. Shrine A.D. Griffiths J.A.M. McDonnell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(12):193-199
Measurements of hypervelocity impact fluxes (in both thick and thin targets) detected by the University of Kent at Canterbury's Timeband Capture Cell Experiment (TiCCE) (flown on ESA's Eureca spacecraft) are presented. The foil perforations are used to derive the ballistic limit values, or the maximum thickness of A1 perforated, for the impacting particles. This data is then combined with the thick target data to derive a unified ballistic limit flux. A significant enhancement in the observed large particle flux compared with LDEF is found, possibly due to the pointing history of Eureca compared to the Earth's orbital direction. Comparisons are also made to predictions from ESABASE modelling. Preliminary results of a study of perforation morphology are also presented, providing insight into particle shape, density and directionality. 相似文献
5.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(10):1868-1875
Fluorescence detectors of ultra high energy cosmic rays (UHECR) allow to record not only the extensive air showers, initiated by the UHECR particles, but also to detect light, produced by meteors and by the fast dust grains. It is shown that the fluorescence detector operated at the mountain site can register signals from meteors with kinetic energy threshold of about 25 J (meteor mass ∼ 5 × 10−6 g, velocity ∼ 3 × 106 cm/s). The same detector might be used for recording of the dust grains of smaller mass (of about 10−10 g) but with velocity 109 cm/s, close to the light velocity (sub-relativistic dust grains). The light signal from a sub-relativistic dust grain is expected in much shorter time scale (∼0.001 s), in comparison with the meteor signal (∼0.1–1 s), and much longer than duration of the UHECR signals (tens of μs). The fluorescence detector capable to register various phenomena: from meteors to UHECR – should have a variable pixel and selecting system integration time. A study of the new phenomenon of sub-relativistic grains will help to understand the mechanism of particle and dust grain acceleration in astrophysical objects (in SN explosions, for example). 相似文献
6.
A. -C. Levasseur-Regourd J. -L. Bertaux J. M. Le Blanc 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(12):197-199
The Halley Optical Probe Experiment (HOPE) on board the Giotto spacecraft has provided the first in-situ measurements, both of the dust and of some gaseous species, from inside the coma of the comet. The instrument has already been described /1/, together with first results /2/. The purpose of this note is to show how optical measurements can lead to in-situ information, how those were obtained during the 13–14 march 1986 Halley fly-by, and what is the status of the data analysis. 相似文献
7.
William P. Schonberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Spacecraft that are launched to operate in Earth orbit are susceptible to impacts by meteoroids and pieces of orbital debris (MMOD). The effect of a MMOD particle impact on a spacecraft depends on where the impact occurs, the size, composition, and speed of the impacting object, the function of the impacted system. In order to perform a risk analysis for a particular spacecraft under a specific mission profile, it is important to know whether or not the impacting particle (or its remnants) will exit the rear of an impacted spacecraft wall. A variety of different ballistic limit equations (BLEs) have been developed for many different types of structural wall configurations. BLEs can be used to optimize the design of spacecraft wall parameters so that the resulting configuration is able to withstand the anticipated variety of on-orbit high-speed impact scenarios. While the level of effort exerted in studying the response of metallic multi-wall systems to high speed particle impact is quite substantial, the extent of the effort to study composite material and composite structural systems under similar impact conditions has been much more limited. This paper presents an overview of the activities performed to assess the resiliency of composite structures and materials under high speed projectile impact. The activities reviewed will be those that have been aimed at increasing the level of protection afforded to spacecraft operating in the MMOD environment, and more specifically, on those activities performed to mitigate the mechanical and structural effects of an MMOD impact. 相似文献
8.
J. C. Mandeville J. A. M. McDonnell W. M. Alexander 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(12):189-191
A low power high reliability impact sensor based on the discharge of a parallel plate capacitor is described. The choice of a surface area of about 1000 cm2 and a penetration thickness of 50 micrometers will provide data on the flux density of cometary dust particles in the 5 micrometers diameter range (10−10g). A high noise immunity promotes excellent reliability under conditions of heavy spacecraft bombardment and high plasma densities in the late stages of the 500 km approach distance. Self-limiting of the event rate compression system also provides flux data at arbitrarily high impact rates. The capacitor sensor will be located on the external face of the outer dust shield of Giotto Spacecraft and it will be a part of the DIDSY experiment. 相似文献
9.
M.J. Burchell L. Kay P.R. Ratcliff 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(12):141-145
We present new measurements concerning generation of light flash during hypervelocity impacts. We use iron particles (10−13 to 10−17 kg) with velocities over the range 1 to 42 km/s impacting semi-infinite targets (aluminium and molybdenum). The main results of previous work in the field are found to be reproduced with some slight deviations. For iron projectiles with given mass and velocity the energy of the flash (normalized to mass) is proportional to velocity to the power of 3.5 for aluminium targets and 3.9 for molybdenum targets. The duration of the flash is of order 1 microsecond. Simultaneous measurements of the generation of impact plasma do not change this. The onset of plasma generation of the bulk target material does not affect the total light flash energy. We discuss the duration of the flash compared to a simple calculation of temperature in the target and plasma vs time. 相似文献
10.
J. C. Mandeville 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1991,11(12):93-96
Upon the last joint Soviet-French mission on the MIR Space Station, on December 1988, an experiment devoted to the collection and detection of cosmic dust and space debris has been deployed in space during 13 months.
A variety of sensors and collecting devices has make possible the study of effects and distribution of cosmic particles after recovery of exposed material. Remnants of particles, suitable for chemical identification are expected to be found within the stacked foil detectors. Discrimination between true cosmic particles and man-made orbital debris is expected.
Some preliminary results are presented here. 相似文献
11.
Gianfranco Vidali Ling Li Joseph E. Roser Ryan Badman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Silicates constitute an important class of interstellar grain material and are the site of catalytic activities, most notably the formation of molecular hydrogen. Here we report an analysis of experiments conducted in the laboratory to measure the efficiency of formation of molecular hydrogen on amorphous silicates, a realistic analogue of interstellar dust grains. From the measurements, we also obtain the energetics of key processes in the reaction and information on the mechanism of reaction. Comparison with earlier measurements of molecular hydrogen formation on a sample of polycrystalline olivine shows that amorphous materials are more efficient catalysts. 相似文献
12.
T. D. Yang R. G. Zhang C. M. Wang H. W. Fu B. L. Zhang J. X. Zhang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):2049-2052
Cabin emergent depressurization (CED) may occur in spacecraft during manned space flight. The purpose of this paper was to study the combined effects of simulated weightlessness (SW) and CED factors on humans and animals. It was found that the amplitude of T wave of human electrocardiograms (ECG) significantly decreased in bed rest and hypoxia compared with the control condition (P<0.05), and that suspension with pure O2 induced severer edema in the lungs of rats than that in only a pure O2 environment. SW and pure O2 caused middle ear congestion and decreased the barofunction during pressure changes. These results indicate that human response to CED factors become more serious under SW because of the blood redistribution. 相似文献
13.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(5):2481-2492
To make up for the insufficiency of earth-based TT&C systems, the use of GNSS technology for high-orbit spacecraft navigation and orbit determination has become a new technology. It is of great value to applying Geosynchronous Earth Orbit (GEO) and Inclined GeoStationary Orbit (IGSO) navigation satellites for supporting the navigation of high-orbit spacecraft since there are three different types of navigation satellites in BeiDou Navigation Satellite System (BDS): Medium Earth Orbit (MEO), GEO and IGSO. This paper conducts simulation experiments based on Two-Line Orbital Element (TLE) data to analyze and demonstrate the role of these satellites in the navigation of high-orbit spacecraft. Firstly, the spacecraft in GEO was used as the target satellite to conduct navigation experiments. Experiments show that for the spacecraft on the GEO orbit, after adding GEO and IGSO respectively on the basis of receiving MEO navigation satellite signals, the accuracies were improved by 7.22 % and 6.06 % respectively. When adding both GEO and IGSO navigation satellites at the same time, the accuracy can reach 16 m. In the second place, navigation and positioning experiments were carried out on three high elliptical orbit (HEO) satellites with different semimajor axis (32037.2 km, 42385.9 km, 67509.6 km). The experiments show that the number of visible satellites has been improved significantly after adding GEO and IGSO navigation satellites at the same time. The visible satellites in these three orbits were improved by 32.84 %, 41.12 % and 37.68 %, respectively compared with only observing MEO satellites.The RMS values of the navigation positioning errors of these three orbits are 25.59 m, 87.58 m and 712.48 m, respectively. 相似文献
14.
M. C. De Sanctis M. T. Capria A. Coradini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(12):2519-2525
Comet 19P/Borrelly was observed by Deep Space One spacecraft on September 22, 2001 (Soderblom et al., 2002).The DS1 images show a very dark and elongate nucleus with a complex topography; the IR spectra show a strong red-ward slope consistent with a very hot and dry surface (345K to 300K). During DS1 encounter the comet coma was dominated by a prominent jet but most of the comet was inactive, confirming the Earth-based observations that <10% of the surface is actively sublimating. We have developed a thermal evolution model of comet PBorrelly, using a numerical code that is able to solve the heat conduction and gas diffusion equations at the same time across an idealized spherical nucleus ( De Sanctis et al., 1999, 2000; Capria et al., 2000; Coradini et al., 1997a,b). The comet nucleus is composed by water, volatiles ices and dust in different proportions. The refractory component is made by grains that are embedded in the icy matrix. The code is able to account for the dust release, contributing to the dust flux, and the formation of dust mantles on the comet surface. The model was applied to a cometary nucleus with the estimated physical and dynamical characteristics of P/Borrelly in order to infer the status and activity level of a body on such an orbit during the DS1 observation. The comet gas flux, differentiation and thermal behavior were simulated and reproduced. The model results are in good agreement with the DS1 flyby results and the ground based observations, in terms of activity, dust coverage and temperatures of the surface. 相似文献
15.
16.
R.V. Garcia P.C.P.M. Pardal H.K. Kuga M.C. Zanardi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(2):1038-1050
This article compares the attitude estimated by nonlinear estimator Cubature Kalman Filter with results obtained by the Extended Kalman Filter and Unscented Kalman Filter. Currently these estimators are the subject of great interest in attitude estimation problems, however, mostly the Extended Kalman Filter has been applied to real problems of this nature. In order to evaluate the behavior of the Extended Kalman Filter, Unscented Kalman Filter and Cubature Kalman Filter algorithms when submitted to realistic situations, this paper uses real data of sensors on-board the CBERS-2 remote sensing satellite (China Brazil Earth Resources Satellite). It is observed that, for the case studied in this article, the filters are very competitive and present advantages and disadvantages that should be dealt with according to the requirements of the problem. 相似文献
17.
S.A. Elwakil M.A. Zahran E.K. El-Shewy A.E. Mowafy 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
A theoretical investigation has been made for adiabatic positive and negative dust charge fluctuations on the propagation of dust-ion acoustic waves (DIAWs) in a weakly inhomogeneous, collisionless, unmagnetized dusty plasmas consisting of cold positive ions, stationary positively and negatively charged dust particles and isothermal electrons. The reductive perturbation method is employed to reduce the basic set of fluid equations to the variable coefficients Korteweg–de Vries (KdV) equation. Either compressive or rarefactive solitons are shown to exist depending on the critical value of the ion density, which in turn, depends on the inhomogeneous distribution of the ion. The dissipative effects of non-adiabatic dust charge variation has been studied which cause generation of dust ion acoustic shock waves governed by KdV-Burger (KdVB) equation. The results of the present investigation may be applicable to some dusty plasma environments, such as dusty plasma existing in polar mesosphere region. 相似文献
18.
19.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(3):329-340
The solar diameter, and its possible variation, have been the subject of careful measurements for over 350 years, with ever increasing accuracy. The importance of the knowledge of the diameter, and its variation, for solar physics, and climatology are pointed out. Different techniques have been used, and the instrumentation has evolved in time. This is why the long-term evolution of the Sun is still a controversial subject. Even for the short term of the 11-year solar cycle, the results are inconsistent even with the most advanced instruments presently in use. These discrepancies probably have several origins: the Earth’s atmosphere, the spectral domain of observation, the stability of the instruments, and the data filtering techniques used. The absence of either internal angular calibration for most of them, or intercomparisons prior to the operational phase either from ground or space, make understanding the origin of the discrepancies difficult. Not all instruments suffer from all the above defects, but all instruments are affected by at least one of them. Furthermore, the lack of precise definition of what is measured is another source of confusion. We review the available results, and attempt to understand the origin of the discrepancies. Finally, a proposal for future measurements is made. 相似文献
20.
C A Mitchell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):219-225
Growth, development, and orientation of higher plants is altered by physical disturbances such as shaking, touching, or vibration. Plant growth responses to thigmic (contact rubbing) forces are almost always negative, whereas growth responses to periodic seismic (shaking) or vibric (vibrational) disturbances may be positive or negative, depending on intensity and duration of force, and prevailing environmental conditions. Seedlings are most sensitive to mechanical stress when grown in darkness or under the low-light conditions typically available in plant flight hardware. Brief exposure to physical perturbation causes immediate growth inhibition of dark-grown seedlings followed by gradual recovery of growth rate beginning 10-12 minutes later. For mild vibration, growth rate may overshoot that of undisturbed control plants within an hour of a stress episode, whereas for thigmic stress recovery may remain incomplete for 24 hours or longer. Lack of physical stimulation by gravity should make plants even more responsive to random physical perturbation. Threshold growth response of seedlings to vibrational parameters needs to be determined under real spaceflight conditions. 相似文献