首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
等离子体彗星的某些相关分析   总被引:2,自引:0,他引:2  
本文进行了彗星的分类统计,给出了"太刚活动"和"等离子体彗星出现频数"的统计,表示出它们之间无相关性。作了"太阳活动"与"彗星事件"的相关分析,表明其相关性是弱的;但是,"太阳风风速"与"彗星事件"的相关性较强。最后,用我国自己的资料作为一个实例,讨论了等离子体彗星的象差角及其扭折骚扰。   相似文献   

2.
In March 6 and 9, 1986 the spacecrafts ‘Vega-1’ and ‘Vega-2’ have flown through the coma of comet Halley and have carried measurements of plasma, energetic particles, magnetic field and plasma waves along its trajectory. A short review of these measurements and its comparison with theoretical models of solar wind interaction with comets are given.

The spacecrafts ‘Vega-1’ and ‘Vega-2’ have studied the solar wind loading by cometary ions, the structure of cometary bow shock and the processes in the inner coma of comet Halley. Exactly in this sequence we discuss the results of measurements and compare them with the theory.  相似文献   


3.
The physical and chemical processes responsible for cometary ionospheres are now beginning to be understood, due to comparisons between theoretical results and recently obtained in situ observations of the ionospheric plasma and magnetic field of comet Halley. The contact surface which separates outflowing cometary plasma from solar wind controlled cometary plasma can be explained in terms of a balance between the magnetic pressure gradient force and ion-neutral drag. An analytic expression for the magnetic field in the vicinity of the contact surface is given in this paper.  相似文献   

4.
本文基于可压缩磁流体动力学模型,数值研究了尾瓣巾具有超Alfven速流动的等离子体彗尾的动力学特征。结果表明,等离子体片和尾瓣之间的剪切等离子体流动将会激发流动撕裂模不稳定性,引起彗尾等离子体片中发生磁场重联,形成磁岛和高密度的等离子体团。进而模拟了太阳风引起的局部驱动力对等离子体彗尾中磁场重联的影响,其特征时间远大于流动撕裂模。我们认为一些观测到的等离子体彗尾中的四块和彗尾截断事件可能主要与彗尾中剪切等离子体流动所引起的流动撕裂模不稳定性有关。   相似文献   

5.
The influence of cometary jets on the solar wind interaction is studied with a 3D hybrid simulation. Anisotropic outgassing patterns were until recently not considered in cometary simulations, despite strong anisotropies found at observations. Comet 67P Churyumov–Gerasimenko, the target of the ROSETTA mission, was chosen as a case study for a simulation series. The cometary outgassing at 2.7 AU is modeled to originate from a single sun-facing jet with different levels of collimation, from isotropy to extremely thin jets. As no bow shock is present at this distance, solar wind patterns resulting from the anisotropic outgassing become more apparent. We find narrower jets to increase the standoff distance of the plasma interaction structures. Also, the Mach cone is wider and stronger for certain jet profiles. The magnetic field remains unable to propagate through the coma, resulting in strong draping patterns for narrow jets due to the increased standoff distance.  相似文献   

6.
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries.  相似文献   

7.
The nucleus of an active comet, such as comet Halley near its perihelion, produces large quantities of gas and dust. The resulting cometary atmosphere, or coma, extends more than a million kilometers into space, where it interacts with the solar wind. An “induced” cometary magnetosphere is a consequence of this interaction. Cometary ion pick-up and mass loading of the solar wind starts to take place at very large cometocentric distances. Eventually this mass loading leads to the formation of a weak cometary bow shock. Even closer to the nucleus, collisional processes, such as ion-neutral chemistry, become important. Other features of the magnetosphere of an active comet include a magnetic barrier, a magnetotail, and a diamagnetic cavity near the nucleus. X-ray emission from comets is produced by the interaction of the solar wind with cometary neutrals and this topic is also discussed. A broad review of the cometary magnetosphere will be given in this paper.  相似文献   

8.
Anticipating the new results from the space missions to Comet Halley and Comet Giacobini-Zinner, we make a brief review of recent theoretical and observational studies of dust-plasma environment. In order to relate different disciplines in cometary research in the context of comet-solar wind interaction, two separate issues: (a) surface processes and (b) plasma processes are considered to indicate how various kinds of observations of cometary dust comas and tails may be used to infer the conditions of solar wind - comet interaction and the corresponding plasma processes in the cometary ionospheres and ion tails (and vice-versa). In particular, it is suggested that the narrow sunward-pointing dust streamers emitted from the cometary nuclei could be related to the electrostatic transport of sub-micron dust over the nuclear surfaces at large heliocentric distances; and the striae sometimes observed in cometary dust tails at smaller heliocentric distances could be the consequence of electrostatic fragmentation of fluffy dust particles in the ion tails.  相似文献   

9.
Ions produced by ionization of the cometary neutrals interact with the solar wind protons to produce large amplitude oscillations of the ambient magnetic field. Such oscillations are convected towards the comet at the unperturbed solar wind speed far from the shock and at a lower speed closer to the shock (due to the solar wind mass loading); hence, they can energize the incoming ions by Fermi acceleration. The spatial extension of the acceleration region is of the order of 106 km and the resulting energy spectrum is harder than in the Earth's bow shock case. The energization of cometary ions produces an additional deceleration of the solar wind. It is suggested that Comet Halley may be the most efficient “cosmic ray shock” in the solar system.  相似文献   

10.
This review of the plasma regime sampled by the encounter of the International Cometary Explorer spacecraft (ICE) with the comet Giacobini-Zinner, discusses the shock, or bow wave, ion pickup, ionization mechanisms, and the cometary plasma tail.

The observations are consistent with the existence of a weak shock, which may be pulsating, but do not exclude the suggestion by Wallis and Dryer that the shock, though present around the sub-solar point, is in process of decaying to a wave on the flanks.

Pickup of cometary ions provokes, by means of several mechanisms, ion cyclotron, mirror, beam and electrostatic instabilities which cause strong turbulence in the inner coma, as indicated in the power spectra of the magnetic field in the coma and the surrounding volume. Heavy mass loading and consequent slowing down of the solar wind is observed. Acceleration of ions by a stochastic mechanism is indicated.

Ionization of cometary neutrals occurs principally by photoionization and charge exchange. Alfvens critical velocity mechanism, likely operates only in the inner coma not visited by ICE. A steep increase of nearly two orders of magnitude in electron density occurs in the tail, where electron velocity distributions show evidence of entry of electrons from the solar wind. The turbulence there is damped by the high ion density and low temperature.

In general, the vicinity of the comet is filled with plasma phenomena and a rich variety of corresponding atomic and molecular processes can be studied there. Comparison between the ICE, Giotto, and Vega observations forms a most valuable future study.  相似文献   


11.
Looking at the chance of the next apparition of the Halley comet in 1986, ISAS decided to send a first Japasanese interplanetary spacecraft for the study of cometary hydrogen coma and solar wind. The Planet-A spacecraft which carries VUV imaging camera and solar wind plasma analyser will be launched in August 1985 and flyby the Halley comet in early March 1986 with the distance of several million kilometers from the comet nucleus. This mission is not only self-consistent but collaborative with other space mission as well as earth-bound observations. In the present paper, the Planet-A mission to Halley is described with brief explanation of the spacecraft.  相似文献   

12.
Computer constructed sketches of plasma boundaries arising from the interaction between the solar wind and the magnetosphere can serve as both didactic and research tools. In particular, the structure of the Earth's bow shock can be represented as a nonuniform surface according to the instantaneous orientation of the IMF, and temporal changes in structural distribution can be modeled as a sequence of sketches based on observed sequences of spacecraft-based measurements. Viewed rapidly, such a sequence of sketches can be the basis for representation of plasma processes by computer animation.  相似文献   

13.
From the discrete spectra of the emissions from the comet in the frequency range from 30 to 195 kHz named CKR (Cometary Kilometric Radiation), movements of the bow shock at comet Halley are concluded, i.e., the observed CKR emissions can be interpreted as being generated and propagating from the moving shock. The motion of the shocks are possibly associated with time variation of the solar wind and of the cometary outgassings. By in-situ plasma waves observations using PWP (Plasma Wave Probe) onboard the Sakigake spacecraft, the characteristic spectra of the electrostatic electron plasma waves, the electron cyclotron harmonic waves, and the ion sound waves have been detected during the interval of the Halley's comet fly-by. Compared with the results of a Faraday cup observation and a magnetometer, it is concluded that these plasma wave phenomena are the manifestation of the ion pick-up processes. The ion pick-up processes are taking place even in the remote region within a distance range from 7×106 to 107 km from the cometary nucleus.  相似文献   

14.
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed.  相似文献   

15.
In this paper we study the shape, extend and time variations of the solar wind transition surfaces using the Lima and Priest (1993) hydrodynamic model adequately adapted for the case of the solar wind flow. The transition surfaces, namely the Slow (Sonic), the Alfvén, and the Fast Magnetosonic surface, are important boundaries around the Sun and play a crucial role in the development of the solar wind and the structure of the inner heliosphere. We determine the shape and dimension of these surfaces as a function of heliographic latitude using measurements from Ulysses spacecraft, and we also study their temporal variation using data from spacecrafts at 1 AU (OMNI database). Furthermore, we establish their dependence with the solar activity, demonstrating their shape and location for the last two solar cycles. From this we noticed that the temporal variation of all transition surfaces follows the 11-year solar cycle. Finally, from the OMNI database, we have studied the temporal variation over the past 40 years of the plasma β parameter, the kinetic to magnetic and the kinetic to thermal energy ratios, at a distance of 1 AU from the Sun.  相似文献   

16.
A solar wind parcel evolves as it moves outward, interacting with the solar wind plasma ahead of and behind it and with the interstellar neutrals. This structure varies over a solar cycle as the latitudinal speed profile and current sheet tilt change. We model the evolution of the solar wind with distance, using inner heliosphere data to predict plasma parameters at Voyager. The shocks which pass Voyager 2 often have different structure than expected; changes in the plasma and/or magnetic field do not always occur simultaneously. We use the recent latitudinal alignment of Ulysses and Voyager 2 to determine the solar wind slowdown due to interstellar neutrals at 80 AU and estimate the interstellar neutral density. We use Voyager data to predict the termination shock motion and location as a function of time.  相似文献   

17.
Since the Voyager mission it is known that Saturn Kilometric Radiation (SKR) is strongly influenced by external forces, i.e., the solar wind and in particular the solar wind ram pressure. Recent studies using Cassini data essentially confirmed these findings for particular periods during the first Cassini orbit of Saturn. The data coverage of SKR by the Cassini/RPWS experiment for the period of six months prior to Saturn Orbit Insertion (July 1, 2004) is rather continuous, whereas there are gaps in the solar wind plasma data. The strong correlation of SKR with the solar wind may provide an indication on the variations of the solar wind plasma, specifically during the gap periods. These periods lacking solar wind data are substituted by Ulysses solar wind data which have been propagated over ∼4 AU, applying magnetohydrodynamic propagation models. Cross correlation studies showed that Ulysses solar wind data can be taken as a substitute for missing Cassini data. The use of SKR as monitor for solar wind variations is discussed. With the present set of observations the SKR proxy lacks significant reliability.  相似文献   

18.
ISAS's (Institute of Space and Astronautical Science) project for the exploration of comet Halley consists of two spacecraft, Sakigake and Suisei, launched on 7 January 1985 and 18 August, respectively.

Sakigake passed the sunward side of the comet on 11 March 1986 with a miss distance of 6.99 million km. Three experiments, a plasma wave probe with dipole and search-coil antennae, a magnetometer with three axis ring core sensor on an extended boom and a four-grid Faraday cup attached to the inner side of the wall of the spacecraft, detected various phenomena caused by the comet at a distance as far as 7 million km.

The other spacecraft, Suisei, flew by the comet on its sunward side with a miss distance of 151 thousand km on 8 March 1986. It carried two experiments, an ultraviolet imager and an energy analyzer for ions. The UV imager was able to take the first image of the hydrogen cloud of comet Halley on 26 November 1985. With this experiment, the spin period of the cometary nucleus, location of jets, amount of water evaporation, distribution of hydrogen density inside cloud, etc. were clarified. The energy analyser experiment provided information on the intensive interaction between cometary and solar wind ions.  相似文献   


19.
Three distinct boundaries are identified from the PICCA cometary ion observations within the innermost part of the coma of comet Halley: (1) the 'cometopause' at a cometocentric distance Rc 1.5×105 km, characterized by the appearance of water-group ions well above background; (2) the 'cold cometary plasma boundary' at Rc 3×104 km, characterized by a sudden and simultaneous decrease in the temperatures of all cometary ions, and (3) the 'ionopause' at Rc 6000 km, characterized by a fast decrease in the intensity of all cometary ions by a factor 3–5. Between the first two boundaries only ions with masses less than 50 amu are present, showing distinct maximum intensities at 18, 32 and 44 amu at the second boundary. Downstream of the second boundary also ions of mass 12, 64, 76, 86 and 100 amu are detected.  相似文献   

20.
采用三维模型,使用混合网格质点法HPIC(Hybrid Particle-in-Cell)对膨胀的磁场和太阳风相互作用过程进行数值模拟.研究了线圈产生的偶极子磁场在注入等离子体后和太阳风粒子的相互作用过程,并对以不同速度入射的等离子体引起的太阳风粒子的变化和磁场变化进行了比较.研究结果表明,偶极子磁场和太阳风作用时会产生弓形激波,此时磁压等于太阳风粒子的动压,当向线圈产生的偶极子磁场中注入高能等离子体时引起磁场膨胀,膨胀的磁场将会排斥太阳风粒子向外运动,从而引起弓形激波的变化,增大与太阳风相互作用的面积,并且粒子入射速度越大,磁场膨胀越明显,与太阳风相互作用愈强.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号