共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
J. Jakimiec M. Tomczak A. Fludra R. Falewicz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(12):2341-2344
This work is based on hard and soft X-ray observations from the YOHKOH satellite. We investigate an example of an arcade flare, for which the arcade channel is seen in soft X-rays as a long bright filament. We have found that:
- 1. (1) Energy can efficiently flow along the arcade channel from the very beginning of a flare.
- 2. (2) During flare evolution a few kernels of hard X-ray emission develop along the arcade channel. Clearly, they are new, additional sources of the flare energy release. A probable scheme of formation of such hard X-ray kernels is briefly discussed.
4.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(9):1394-1397
Particle acceleration by direct current electric field in the current sheet has been extensively studied, in which an electric and a magnetic field are generally prescribed, and a power law distribution of the electron energy is obtained. Based on MHD numerical simulations of flares, this paper aims at investigating the time evolution of the electron energy spectrum during solar flares. It turns out that the model reproduces the soft–hard–hard spectral feature which was observed in some flares. 相似文献
5.
Debi Prasad Choudhary Sanjay Gosain Nat Gopalswamy P.K. Manoharan R. Chandra W. Uddin A.K. Srivastava S. Yashiro N.C. Joshi P. Kayshap V.C. Dwivedi K. Mahalakshmi E. Elamathi Max Norris A.K. Awasthi R. Jain 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Emergence of complex magnetic flux in the solar active regions lead to several observational effects such as a change in sunspot area and flux embalance in photospheric magnetograms. The flux emergence also results in twisted magnetic field lines that add to free energy content. The magnetic field configuration of these active regions relax to near potential-field configuration after energy release through solar flares and coronal mass ejections. In this paper, we study the relation of flare productivity of active regions with their evolution of magnetic flux emergence, flux imbalance and free energy content. We use the sunspot area and number for flux emergence study as they contain most of the concentrated magnetic flux in the active region. The magnetic flux imbalance and the free energy are estimated using the HMI/SDO magnetograms and Virial theorem method. We find that the active regions that undergo large changes in sunspot area are most flare productive. The active regions become flary when the free energy content exceeds 50% of the total energy. Although, the flary active regions show magnetic flux imbalance, it is hard to predict flare activity based on this parameter alone. 相似文献
6.
B.R. Dennis A. Veronig R.A. Schwartz L. Sui A.K. Tolbert D.M. Zarro RHESSI Team 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2459-2464
It is believed that a large fraction of the total energy released in a solar flare goes initially into acceleratedelectrons. These electrons generate the observed hard X-ray bremsstrahlung as they lose most of their energy by coulomb collisions in the lower corona and chromosphere. Results from the Solar Maximum Mission showed that there may be even more energy in accelerated electrons with energies above 25 keV than in the soft X-ray emitting thermal plasma. If this is the case, it is difficult to understand why the Neupert Effect — the empirical result that for many flares the time integral of the hard X-ray emission closely matches the temporal variation of the soft X-ray emission — is not more clearly observed in many flares. From recent studies, it appears that the fraction of the released energy going into accelerated electrons is lower, on average, for smaller flares than for larger flares. Also, from relative timing differences, about 25% of all flares are inconsistent with the Neupert Effect. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is uniquely capable of investigating the Neupert Effec since it covers soft X-rays down to 3 keV (when both attenuators are out of the field of view) and hard X-rays with keV energy resolution, arcsecond-class angular resolution, and sub-second time resolution. When combined with the anticipated observations from the Soft X-ray Imager on the next GOES satellite, these observations will provide us with the ability to track the Neupert Effect in space and time and learn more about the relation between plasma heating and particle acceleration. The early results from RHESSI show that the electron spectrum extends down to as low as 10 keV in many flares, thus increasing the total energy estimates of the accelerated electrons by an order of magnitude or more compared with the SMM values. This combined with the possible effects of filling factors smaller than unity for the soft X-ray plasma suggest that there is significantly more energy in nonthermal electrons than in the soft X-ray emitting plasma in many flares. 相似文献
7.
David M. Rust 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):191-198
This paper deals with Solar Maximum Year observations that can shed light on the roles of energetic electron beams and thermal conduction in solar flares. The emphasis is on X-ray and UV images and on the interpretation of chromospheric spectra. The format is that of a one-sided debate advocating the view that most of the flare energy that reaches the chromosphere is transferred by thermal conduction rather than by energetic electron beams. Reference is made to papers offering opposing points of view on this still controversial question. 相似文献
8.
T. Takakura K. Tanaka E. Hiei 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):143-152
High temperature phenomena occurring in solar flares are reviewed based on hard X-ray images and spectral analyses of highly ionized iron lines observed aboard the Hinotori spacecraft.Five basic flare components are proposed, i.e., impulsive (I), gradual hard (GH), thermal (T), quasi thermal (QT) and hot thermal (HT) components. A flare shows some combination of the five components. Energy release and transport for each component would give a lot of variety to the hard X-ray image, spectrum and time history of X-rays. 相似文献
9.
M.E. Machado A.M. Hernández M.G. Rovira C.V. Sneibrun 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):91-94
We have studied soft and hard X-ray images of 13 solar flares from six active regions observed by the Hard X-ray Imaging Spectrometer (HXIS). Our results indicate the presence of pre-hard X-ray burst excesses in the 11.5–30.0 keV range, indicating a slow buildup of the acceleration process or a strong preheating. During the impulsive phase, all of the events show the simultaneous energization of neighboring field structures, which, in the case we show in some detail, share about equal amounts of the released energy. This association seems to be indicative of strong acceleration and energy release triggered by the interaction between magnetic loops. 相似文献
10.
Marcos E. Machado 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(11):115-133
We review the recent advances in the field of energy transfer and dissipation in solar flares. New observations and theoretical results have been obtained during the SMY and discussed in several workshops. Important new results have been provided by imaging hard X-ray and radio observations, high resolution spectra in the soft X-ray range, polarization measurements and combined optical, gamma- and X-ray data. We summarize results on the following topics: a) interpretation of hard X-ray bursts; b) heating and cooling of X-ray flare plasmas; c) chromospheric heating and evaporation; d) white-light flares. An overall picture of the importance of transfer processes is given, together with prospects for development of future research topics. 相似文献
11.
T. Magara K. Shibata 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(12):1903-1906
One phenomena Yohkoh has observed is plasmoid eruption in flares. Thus this is a key factor that must be explained in any flare mechanism. In order to understand the dynamics of a plasmoid, we performed a numerical MHD simulation and investigated the evolution of the coronal magnetic field, which is initially a force-free configuration. The main results are as follows. At first, small amount of dissipation, induced by the initial perturbation, occurs in the current sheet where the plasmoid forms. This plasmoid is slowly going upward by magnetic tension force of the reconnected magnetic fields produced by initial dissipation. The crucial point comes when the perpendicular magnetic fields are washed away from the reconnection point, after that the reconnection proceeds effectively so that the magnetic tension force of the reconnected fields becomes strong, which make the plasmoid be rapidly erupted upward. These are consistent with the observational results, which say that before the main energy release the plasmoid slowly rises and when the flare sets in it is rapidly accelerated upward. In this paper, we emphasize on the role that the perpendicular magnetic fields play in the evolution of flare. 相似文献
12.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(8):145-148
A dynamical model of magnetic reconnection in solar two-ribbon flares is applied to EXOSAT observations of a long-decay flare from the star EQ Peg. We show that the model is able of reproducing correctly the energy release rate and temporal evolution of the decay phase of the observed flare. We conclude that the flare was the stellar counterpart of solar two-ribbon flares and we derive the physical parameters of the emitting region. 相似文献
13.
B.V. Somov T. Kosugi H.S. Hudson T. Sakao S. Masuda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2439-2450
The basic ideas to model the large solar flares are reviewed and illustrated. Some fundamental properties of potential and non-potential fields in the solar atmosphere are recalled. In particular, we consider a classification of the non-potential fields or, more exactly, related electric currents, including reconnecting current layers. The so-called ‘rainbow reconnection’ model is presented with its properties and predictions. This model allows us to understand main features of large flares in terms of reconnection. We assume that in the two-ribbon flares, like the Bastille-day flare, the magnetic separatrices are involved in a large-scale shear photospheric flow in the presence of reconnecting current layers generated by a converging flow. 相似文献
14.
J.S. Kaastra 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):209-210
A semi-analytical model for the electrodynamic development of two-ribbon flares is presented. A current filament above a bipolar active region starts rising according to the model of Van Tend and Kuperus. Due to this motion large induced electric fields arise at a magnetic neutral line far below the filament, resulting in and associated with magnetic reconnection and the formation of a current sheet. The interaction of this current sheet with the original current filament, the background magnetic field and the boundary layer of the photosphere determine the further electrodynamic development of the flare. The model predicts the energy release, the time of maximum, the height of the energy source and other quantities reasonably well. 相似文献
15.
Yang Su W.Q. GanY.P. Li 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):988-991
Based on the light curves and images of RHESSI flares, we tried to make a preliminary classification of solar flares. Three basic types of flares seem to be existed: accordantly gradual flares, accordantly impulsive flares, and early impulsive flares. The proportion for each type is given. The possible physical meaning related to different types is discussed. 相似文献
16.
L.K. Harra-Murnion S.P. Plunkett S.F. Helsdon K.J.H. Phillips L. Van Driel-Gesztelyi B. Schmieder B. Rompolt M. Akioka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(12):2333-2336
Yohkoh has observed many long duration events permitting a statistical study of the properties of these interesting events. We have selected ten flares for analysis which have durations between 5 and 20 hours, and size ranging from C to X GOES class. Employing the Soft X-ray Telescope, the Bragg Crystal Spectrometer, GOES spacecraft, and ground-based H data, we examine the morphology, temperature, emission measure, location of the hard X-ray source, non-thermal velocities and upflows of the plasma at different stages in the flare development. Our results are used to address the question of the energy source that maintains the hot plasma at temperatures of several million degrees for many hours. 相似文献
17.
Lin Quan Bing Cai Xiong Hu Qingchen Xu Ling Li 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(2):715-721
During solar flares, the X-ray radiation suddenly increases, resulting in an increase in the electron density of the atmospheric D region and a strong absorption of short-wave radio waves. Based on Langfang medium frequency (MF) radar, this paper analyzed the variation characteristics of D region in the lower ionosphere from 62 km to 82 km. The analysis focused on multiple C-level and M-level solar flare events before and after the large-scale flare event at 11:53 (UT) on September 6, 2017. The results show that it is difficult to detect the electron density over 70 km in Langfang during solar flares, but the electron density value can be obtained as low as 62 km, and the stronger the flare intensity, the lower the detectable electron density height. Besides, the equal electron density height, the received power of X and O waves will also be significantly reduced during the flares, and the reduction of equal electron density height has a weak linear relationship with flare intensity. 相似文献
18.
19.
E. Antonucci D. Marocchi G.M. Simnett 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):111-115
Observation of two flares obtained with the Solar Maximum Mission spectrometers indicate that at flare onset the emission in soft (3.5 – 8 keV) and hard (16 – 30 keV) X-rays is predominant at the footpoints of the flaring loops. Since, at the same time, blue-shifts are observed in the soft X-ray spectra from the plasma at temperature of 107 K, we infer that material is injected at high velocity into the coronal loops from the footpoints. These areas are also the sites of energy deposition, since their emission in hard X-rays is due to non-thermal electrons penetrating in the denser atmosphere. Hence, chromospheric evaporation occurs where energy is deposited. During the impulsive phase, the configuration of the flare region changes indicating that the flaring loop is progressively filled by hot plasma. 相似文献
20.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(10):1743-1751
Proton and electron heating of a flaring atmosphere is compared in a kinetic approach for the particles ejected from a non-neutral reconnecting current sheet (RCS) located above the top of reconnected flaring loops in a two-ribbon flare. Two kinds of high-energy particles are considered: particles accelerated by a super-Dreicer electric field and those ejected from the reconnection region as neutral outflows, or separatrix jets. The beam electrons are assumed to deposit their energy in Coulomb collisions and Ohmic heating of the ambient plasma particles by the electric field induced by the precipitating beams. The protons are assumed to deposit their energy in generation of kinetic Alfvén waves (KAWs), which, in turn, dissipate due to Cherenkov resonant scattering on the ambient plasma electrons. The beam electrons are found to provide a fast (within a few tenth of a second) heating of the atmosphere that is well spread in depth from the corona to the lower chromosphere. The protons are shown to precipitate to the lower atmosphere much slower (up to few seconds for beam and up to 10–20 s for slow jets). Slow jet protons provide heating of the two compact regions: the first located at the top of a flaring loop just below the RCS, and the second one appearing at the transition region (TR) and upper chromosphere; fast beam protons deposit their energy in the TR and chromosphere only. 相似文献