首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coronal spectroscopy has pushed forward the understanding of physical processes in all phenomena on the Sun. In this review we concentrate specifically on plasma parameters measured in sources of the slow solar wind in active regions and the early phases of solar flares. These topics are a key part of the science goals of the Solar Orbiter mission (Müller et al., 2020) which has been designed to probe what drives the solar wind and solar transients that fill the heliosphere.Active regions, outside of flaring, have general characteristics that include closed loops showing red-shifted (down-flowing plasma), and the edges of the active regions showing blue-shifted (upflowing plasma). Constraining and understanding the evolution, behaviour and cause of the flows has been developed in the past years and are summarised. Of particular importance is the upflowing plasma which, in some cases, can contribute to the slow solar wind, and this review concentrates on recent results on this topic.The early phases of solar flares and their energy sources are not yet fully understood. For decades, there has been a huge interest in pin-pointing the trigger of a solar flare. Coronal spectroscopy has revealed small-scale dynamics that occurs tens of minutes before the flare begins. The understanding of the trigger is key to improving flare predictions in the future, as well as understanding the physical processes.Finally we look to the future of coronal spectroscopy, with new instruments and methodologies being developed that build on the current knowledge, and will improve significantly our physical understanding of processes at all scales on the Sun.  相似文献   

2.
We present the evolution of magnetic field and relationship with the magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained at Huairou Solar Observing Station near Beijing, and also longitudinal magnetograms by MDI of SOHO, white light and 171 Å images by TRACE and soft X-ray images by Yohkoh.The conclusions in the analysis of the formation process of complex and delta magnetic configuration in some super active regions are the following: (1) The magnetic shear and gradient provide the non-potentiality of the magnetic field of active regions reflecting the existence of electric current. (2) Some of large-scale delta active regions could be due to the emergence of highly sheared non-potential magnetic flux bundles from the subatmosphere with amount of magnetic helicity, in addition to the emergence of twisted magnetic ropes. (3) We also present some results on the study of the magnetic (current) helicity in solar active regions.  相似文献   

3.
In the frame of a simple self-consistent model for high-temperature turbulent current sheet (HTCS) /1/, three effects are considered. (i) Gradient instabilities create anamalous plasma diffusion across magnetic field and increase the power of energy release in HTCS. (ii) Penetration of a small transverse component of magnetic field into HTCS also can significantly increase an energy output of HTCS. (iii) There appears electric current circulating around a current sheet at a compression of longitudinal magnetic field. This current induces a Joule heat; however, a total flux of the longitudinal field remains constant.  相似文献   

4.
We report on two flare-productive adjacent active regions (ARs), with different levels of coronal mass ejection (CME) association. AR 10039 and AR 10044 produced strong X-ray flares during their disk passages. We examined the CME association rate of X-ray flares and found it to be different between the two ARs. AR 10039 was CME-rich with 72% association with flares, while AR 10044 was CME-poor with an association rate of only 14%. CMEs from the CME-rich AR were faster and wider than the ones from the CME-poor AR. The flare activity of AR 10044 was temporally concentrated over a short interval and spatially localized over a compact area between the major sun spots. We suggest that different pre-eruption evolution and magnetic configuration in the two regions might have contributed to the difference between the two ARs.  相似文献   

5.
The author's finding that active regions are sources of relatively slow and approximately radial quasistationary corpuscular streams is confirmed by using the fact that active regions are closely connected with coronal holes. Furthermore, attention is paid to numerous papers according to which the active regions characterized by enhanced and prolonged chromospheric (flare) activity are also sources of quasistationary corpuscular streams. Velocities of gases in these streams are higher than velocities of gases in streams from “quiet” active regions.On the basis of all these studies it is suggested that the origin of outflow of plasma from “quiet” active regions and from active regions with enhanced flare activity is the same and is due to some continuous non-stationary processes in the active regions. The velocity of gases in all these streams grows with increasing continuous flare activity in the active regions.It is concluded that quasistationary corpuscular streams from active regions with enhanced flare activity are important sources of cosmic rays from the sun.  相似文献   

6.
Active regions on the solar surface are known to possess magnetic helicity, which is predominantly negative in the northern hemisphere and positive in the southern hemisphere. Choudhuri et al. [Choudhuri, A.R. On the connection between mean field dynamo theory and flux tubes. Solar Phys. 215, 31–55, 2003] proposed that the magnetic helicity arises due to the wrapping up of the poloidal field of the convection zone around rising flux tubes which form active regions. Choudhuri [Choudhuri, A.R., Chatterjee, P., Nandy, D. Helicity of solar active regions from a dynamo model. ApJ 615, L57–L60, 2004] used this idea to calculate magnetic helicity from their solar dynamo model. Apart from getting broad agreements with observational data, they also predict that the hemispheric helicity rule may be violated at the beginning of a solar cycle. Chatterjee et al. [Chatterjee, P., Choudhuri, A.R., Petrovay, K. Development of twist in an emerging magnetic flux tube by poloidal field accretion. A&A 449, 781–789, 2006] study the penetration of the wrapped poloidal field into the rising flux tube due to turbulent diffusion using a simple 1-d model. They find that the extent of penetration of the wrapped field will depend on how weak the magnetic field inside the rising flux tube becomes before its emergence. They conclude that more detailed observational data will throw light on the physical conditions of flux tubes just before their emergence to the photosphere.  相似文献   

7.
The patterns of reconnection in the Earth magnetotail and in the solar corona above the active region are presented. The electric field and field-aligned currents (FAC) generation in the current sheet are discussed.  相似文献   

8.
A semi-analytical model for the electrodynamic development of two-ribbon flares is presented. A current filament above a bipolar active region starts rising according to the model of Van Tend and Kuperus. Due to this motion large induced electric fields arise at a magnetic neutral line far below the filament, resulting in and associated with magnetic reconnection and the formation of a current sheet. The interaction of this current sheet with the original current filament, the background magnetic field and the boundary layer of the photosphere determine the further electrodynamic development of the flare. The model predicts the energy release, the time of maximum, the height of the energy source and other quantities reasonably well.  相似文献   

9.
Neutrons with energies exceeding 1 GeV are emitted in the course of solar flares. Suitable dedicated neutron spectrometers with directional characteristics are necessary for a systematic spectroscopy of solar neutrons. We report here a study of instruments based on the detection of proton recoils from hydrogenous media, with double scattering in order to provide directional information, and also a novel scheme based on the detection of radiation from the neutron magnetic dipole moment, permitting also directional detection of neutrons. Specific designs and detection systems are discussed.  相似文献   

10.
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.  相似文献   

11.
A coronal explosion is a density wave observed in X-ray images of solar flares. The wave occurs at the end of the impulsive phase, which is the time at which the flare's thermal energy content has reached its maximum value. It starts in a small area from where it spreads out, mainly into one hemisphere, with velocities that tend to rapidly decrease with time, and which are between ~ 103 and a few tens of km s?1. We interpret them as magneto-hydrodynamic waves that (mainly) move downward from the low corona into denser regions.  相似文献   

12.
Yohkoh soft X-ray observations have revealed coronal X-ray plasma ejections and jets associated with solar flares. We have studied an X-ray plasma ejection on 1993 November 11 in detail, as a typical example of X-ray plasma ejections (possibly plasmoids expected from the reconnection model). The results are as follows: (1) The shape of the ejected material is a loop before it begins to rise. (2) The ejecta are already heated to 5 – 16 MK before rising. (3) The kinetic energy of the ejecta is smaller than the thermal energy content of the ejecta. (4) The thermal energy of the ejecta is smaller than that of the flare regions. (5) The acceleration occurs during the impulsive phase. These results are compared with the characteristics of X-ray jets, and a possible interpretation (for both plasmoids and jets) based on the magnetic reconnection model is briefly discussed.  相似文献   

13.
The physics of the impulsive phase of solar flares is discussed in relation to high resolution microwave, hard X-ray and ultraviolet observations. High spatial resolution observations of the structure of microwave flaring loops and their interpretation in terms of arcades of loops as the sites of primary energy release are presented. Theoretical interpretation of the confinement of microwave producing energetic electrons in the coronal part of loops is discussed. High temporal and spatial resolution measurements in hard X-rays, as well as observations of the spectral evolution of the hard X-ray emission are presented. Observations of the relative locations of microwave and hard X-ray emitting regions are presented and their significance with respect to the energy release site and electron acceleration is discussed. The relative timing of the peaks of impulsive hard X-ray and microwave burst is discussed. The significance of ultraviolet measurements in obtaining the density of flaring regions is discussed. Possible diagnostics of impulsive phase onsets from cm-λ polarization data are presented, and the role of the emergence of new flux and of the current sheet formed between closed loops in producing impulsive energy release at centimeter wavelengths are analyzed. Decimeter and meter wave manifestations of preflash phase and millisecond pulsations at centimeter and decimeter wavelengths and the relevant physical processes involved are discussed.  相似文献   

14.
We present a model for composition of heavy ions in the solar energetic particles (SEP). The SEP composition in a typical large solar particle event reflects the composition of the Sun, with adjustments due to fractionation effects which depend on the first ionization potential (FIP) of the ion and on the ratio of ionic charge to mass (Q/M). Flare-to-flare variations in composition are represented by parameters describing these fractionation effects and the distributions of these parameters are presented.  相似文献   

15.
X-ray flares and acceleration processes are in one complex of sporadic solar events (together with CMEs, radio bursts, magnetic field dissipation and reconnection). This supposes the connection (if not physical, but at least statistical) between characteristics of the solar energetic proton events and flares. The statistical analysis indicates that probability and magnitude of the near-Earth proton enhancement depends heavily on the flare importance and their heliolongitude. These relations may be used for elaboration of the forecasting models, which allow us to calculate probability of the solar proton events from the X-ray observations.  相似文献   

16.
Particle acceleration by direct current electric field in the current sheet has been extensively studied, in which an electric and a magnetic field are generally prescribed, and a power law distribution of the electron energy is obtained. Based on MHD numerical simulations of flares, this paper aims at investigating the time evolution of the electron energy spectrum during solar flares. It turns out that the model reproduces the soft–hard–hard spectral feature which was observed in some flares.  相似文献   

17.
Numerical simulations of two types of flares indicate that magnetic reconnection can provide environments favorable for various particle acceleration mechanisms to work. This paper reviews recent test particle simulations of DC electric field mechanism, and discusses how the flare particles can escape into the interplanetary space under different magnetic configurations.  相似文献   

18.
We find that the heliolongitudinal distribution of solar flares associated with earth-observed solar proton events is a function of the particle measurement energy. For solar proton events containing fluxes with energies exceeding 1 GeV, we find a Gaussian distribution about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun. This distribution is modified as the detection threshold is lowered. For > 100 MeV solar proton events with fluxes > or = 10 protons (cm2-sec-ster)-1 we find the distribution becomes wider with a secondary peak near the solar central meridian. When the threshold is lowered to 10 MeV the distribution further evolves. For > 10 MeV solar proton events having a flux threshold at 10 protons (cm2-sec-ster)-1 the distribution can be considered to be a composite of two Gaussians. One distribution is centered about the probable root of the Archimedean spiral favorable propagation path leading from the earth to the sun, and the other is centered about the solar central meridian. For large flux solar proton events, those with flux threshold of 1000 (cm2-sec-ster)-1 at energies > 10 MeV, we find the distribution is rather flat for about 40 degrees either side of central meridian.  相似文献   

19.
The 2D MHD model of the flare magnetic reconnection shows that a reconnection activity, changes of the magnetic field topology and generation of waves are connected. It is found that after the phase of a quasi-stationary reconnection in the extended current sheet above the flare arcade the tearing mode instability produces the plasmoids which then can interact and generate MHD waves. Results of particle-in-cell simulations of the tearing processes, which accelerate electrons, are mentioned. Then all these processes are discussed from the point of view of possible radio emissions. While shocks can contribute to the type II radio burst, the superthermal electrons trapped in plasmoids can generate so called drifting pulsating structures. Furthermore, regions with the MHD turbulence may manifest themselves as the lace or dm-spike bursts.  相似文献   

20.
This review focuses on the processes that energize and trigger M- and X-class solar flares and associated flux-rope destabilizations. Numerical modeling of specific solar regions is hampered by uncertain coronal-field reconstructions and by poorly understood magnetic reconnection; these limitations result in uncertain estimates of field topology, energy, and helicity. The primary advances in understanding field destabilizations therefore come from the combination of generic numerical experiments with interpretation of sets of observations. These suggest a critical role for the emergence of twisted flux ropes into pre-existing strong field for many, if not all, of the active regions that produce M- or X-class flares. The flux and internal twist of the emerging ropes appear to play as important a role in determining whether an eruption will develop predominantly as flare, confined eruption, or CME, as do the properties of the embedding field. Based on reviewed literature, I outline a scenario for major flares and eruptions that combines flux-rope emergence, mass draining, near-surface reconnection, and the interaction with the surrounding field. Whether deterministic forecasting is in principle possible remains to be seen: to date no reliable such forecasts can be made. Large-sample studies based on long-duration, comprehensive observations of active regions from their emergence through their flaring phase are needed to help us better understand these complex phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号