首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Doppler and ranging measurements using the radio signal of the GIOTTO spacecraft were taken before, during, and after the encounter with Comet Halley on 1314 March 1986. The spacecraft velocity was found to decrease by a total of 23.3 cm s?1 due to impacting gas and (primarily) dust in the cometary atmosphere. A preliminary dust production rate Qd ? 10 × 103kg s?1 is found to be consistent with this deceleration. Power spectra of the carrier phase fluctuations reveal an increase in level and a flattening of the spectrum just prior to encounter, presumably associated with the enhanced dust impact rate. Finally, simulated Doppler time profiles are computed using the radial dependence of plasma density observed by the GIOTTO in situ investigations. It is shown that the cometary electron content profile would have been clearly seen if a dual-frequency downlink radio configuration had been available at encounter.  相似文献   

2.
3.
The VEGA-1 and VEGA-2 spacecraft made their closest approach to Comet Halley on 6 and 9 March, respectively. In this paper those results of the onboard imaging experiment which were obtained around closest approach are discussed. The nucleus of the comet was clearly identifiable as an irregularly shaped object, with overall dimensions of (16±1)×(8±1)×(8±1) km. The nucleus rotates in the prograde sense about an axis nearly perpendicular to the orbital plane with a period of 53±2 hours. Its albedo is only 0.04±0.020.01 Many of the jet features observed during the second fly-by have been spatially reconstructed. Their sources form a quasi-linear structure on the surface. The dust above the surface is shown to be generally optically thin with the exception of certain specific dust jets. Brightness features on the surface are clearly seen. Correlating our data with other measurements, we conclude that the dirty snow-ball model will probably need to be revised.  相似文献   

4.
Remote optical observations of comets provide information only along the whole line of sight and require some assumptions to be interpreted. Due to the advent of cometary space missions, a two-step strategy has been defined to derive without any assumption spatial distribution and physical properties of dust by in-situ optical observations. First, an Optical Probe Experiment, suitable for a fast fly-by, should provide passive in-situ measurements in the direction of the approaching (or receding) comet near encounter; by suitably differencing such observations, the brightness and polarization per unit volume can be recovered along the trajectory of the spacecraft. Secondly, a Light Scattering Dust Analyzer, suitable for a rendez-vous mission, should permit the determination of the scattering properties of individual particles. Both experiments also provide a connecting link between non-optical in-situ measurements (from mass spectrometers or impact detectors) and remote optical observations.  相似文献   

5.
After a general definition of data- and instrument autonomy and an introduction to the End-to-End Data System concept the future guidelines for “Packet Telemetry and -Telecommand” are overviewed. These and other guidelines have been initiated by a NASA/ESA working group and further developed by an international “Consultative Committee for Space Data Systems” (CCSDS), coordinated with 6 space agencies. The status of these documents is reviewed, especially the document on Packet Telemetry, which has reached a mature stage. A pilot project, Autonomous Payload Control (APC), for the study and the demonstration of these new procedures is introduced shortly.  相似文献   

6.
The Vega-1 and Vega-2 wave and plasma measurements performed on 6 and 9 March 1986 in the environment of comet Halley present similar characteristics. Field spectral intensity of up to 5 mVm?1Hz?12 at 300 Hz is measured at closest approach; enhanced signals are detected in the whistler mode and in the vicinity of the lower hybrid resonance frequency within respective average distances of 130,000 km and 60,000 km from the nucleus. The plasma density rises from 100 cm?3 at 200,000 km up to 3000 cm?3 at 25,000 km. The spacecraft potential is of the order of +3 V beyond a distance of 200,000 km and decreases to about +0.5 V at 8,000 km.  相似文献   

7.
The dust population at 1 AU is known for all sizes between μm and cm to an accuracy better than one order of magnitude. It was observed by Helios that the fine grained dust (μm to 100 μm) decreases with increasing sun distance ∞ r?1.3, at least between 0.3 and 1 AU /1/.Two Pioneer 1011 dust experiments observed the dust distribution beyond 1 AU in the 10 to 100 μm diameter size range for the first time directly with contradicting results. The penetration experiment saw a constant flux out to 20 AU while the optical experiment observed a decrease of the dust number densities until 3.3 AU, but no scattered light was recorded further out. An attempt is made to explain these observations on the basis of the socalled ‘Greenberg’-particles: cometary core/mantle grains with organic mantle material. The observed enhancement of the dust flux by 1 or 2 orders of magnitudes near Jupiter and Saturn are interpreted as being caused by gravitational focussing, ejecta from jovian/saturnian satellites and electrostatic fragmentation products.  相似文献   

8.
9.
We outline an analytical method for studying the motion of charged dust particles that orbit an oblate planet having a tilted, offset, dipolar magnetic field. Our computed trajectories closely mimic previous numerical results; equilibrium dust potentials must be less then 10 volts or the Jovian ring would be thicker than observed. We identify several Lorentz resonances, where the periods of components of the Lorentz force, as seen by a reference particle moving in the equatorial plane, match the particle's orbital period; several seem to be near observed features of the Jovian ring system.  相似文献   

10.
We describe the progress which has been made in constructing a new type of X-ray telescope, which operates at normal incidence in the soft X-ray region by the use of multilayer coatings. The principles involved in state-of-the-art multilayer technology and some recent high-resolution imaging results are discussed. A rocket payload incorporating a multilayer X-ray mirror is presently being constructed. It is of Ritchey-Chretien design and the expected spatial resolution is 14arcsec. The scientific program for solar coronal studies and future instrumental developments are also discussed.  相似文献   

11.
The influence of lowered gravitation on biomass and CO2 production in B.megaterium, a xerophyte, and Spirillum azotocolligens, an aqueous spirillum, in liquid nutrient medium on a horizontal clinostat at 0.1 g has been studied. As controls we considered: 1) growth under stationary conditions of cultivation with test tubes oriented horizontally; 2) growth on a synchronously revolving centrifuge; and 3) growth on a swing with stirring. A horizontal clinostat at 0.1 g stimulates biomass production and CO2 release in B.megaterium as compared with the controls. Spirillum azotocolligens growth is reduced as a result of clinostating. The best development and CO2 production are observed under stationary conditions. The results do not support the assumption that microorganisms living in water are more resistant to lowered gravitation than those living in soil.  相似文献   

12.
In this paper we review the theory of charged test particle motion in magnetic fields. This theory is then extended to charged dust particles, for which gravity and charge fluctuations play an important role. It is shown that systematic drifts perpendicular to the magnetic field and stochastic transport effects may then have to be considered - none of which occur in the case of atomic particles (with the exception of charge exchange reactions). Some applications of charged dust particle transport theory to planetary rings are then briefly discussed.  相似文献   

13.
14.
In situ measurements by dust experiments on HEOS II showed significant enhancement of fluxes for submicron particles. Recent studies have shown that lunar ejecta in this size range can, in a highly simplified model, be trapped in the earth's magnetosphere. The present work is a more detailed study of the dynamics of lunar ejecta in the magnetosphere. The particle size ranges for which the guiding center approximation is valid, for which corotation is negligible, and for which electromagnetic forces dominate gravitational forces have been calculated. Temporal details of charge acquisition by ejecta in the plasmasphere are considered.  相似文献   

15.
The Anger wedge and strip anode event location system developed for microchannel plate image photon detectors at the Space Sciences Laboratory of the University of California, Berkeley, has been extended in the present work by the use of electron beam lithography (EBL). Computer-aided design methods have been used to develop several types of RALICON (Readout Anodes of Lithographic Construction) for use in photon counting microchannel plate imaging detectors. These anodes are suitable for linear, two dimensional or radial position measurements and they incorporate novel design features made possible by the EBL fabrication technique which significantly extend their application relative to published wedge-strip anode designs.  相似文献   

16.
The capability of making stereoscopic observations of clouds from meteorological satellites is a new basic analysis tool with a broad spectrum of applications. Stereoscopic observations from satellites were first made using the early vidicon tube weather satellites (e.g., Ondrejka and Conover [1]). However, the only high quality meteorological stereoscopy from low orbit has been done from Apollo and Skylab, (e.g., Shenk et al. [2] and Black [3], [4]). Stereoscopy from geosynchronous satellites was proposed by Shenk [5] and Bristor and Pichel [6] in 1974 which allowed Minzner et al. [7] to demonstrate the first quantitative cloud height analysis. In 1978 Bryson [8] and desJardins [9] independently developed digital processing techniques to remap stereo images which made possible precision height measurement and spectacular display of stereograms (Hasler et al. [10], and Hasler [11]). In 1980 the Japanese Geosynchronous Satellite (GMS) and the U.S. GOES-West satellite were synchronized to obtain stereo over the central Pacific as described by Fujita and Dodge [12] and in this paper. Recently the authors have remapped images from a Low Earth Orbiter (LEO) to the coordinate system of a Geosynchronous Earth Orbiter (GEO) and obtained stereoscopic cloud height measurements which promise to have quality comparable to previous all GEO stereo. It has also been determined that the north-south imaging scan rate of some GEOs can be slowed or reversed. Therefore the feasibility of obtaining stereoscopic observations world wide from combinations of operational GEO and LEO satellites has been demonstrated.Stereoscopy from satellites has many advantages over infrared techniques for the observation of cloud structure because it depends only on basic geometric relationships. Digital remapping of GEO and LEO satellite images is imperative for precision stereo height measurement and high quality displays because of the curvature of the earth and the large angular separation of the two satellites. A general solution for accurate height computation depends on precise navigation of the two satellites. Validation of the geosynchronous satellite stereo using high altitude mountain lakes and vertically pointing aircraft lidar leads to a height accuracy estimate of ± 500 m for typical clouds which have been studied. Applications of the satellite stereo include: 1) cloud top and base height measurements, 2) cloud-wind height assignment, 3) vertical motion estimates for convective clouds (Mack et al. [13], [14]), 4) temperature vs. height measurements when stereo is used together with infrared observations and 5) cloud emissivity measurements when stereo, infrared and temperature sounding are used together (see Szejwach et al. [15]).When true satellite stereo image pairs are not available, synthetic stereo may be generated. The combination of multispectral satellite data using computer produced stereo image pairs is a dramatic example of synthetic stereoscopic display. The classic case uses the combination of infrared and visible data as first demonstrated by Pichel et al. [16]. Hasler et at. [17], Mosher and Young [18] and Lorenz [19], have expanded this concept to display many channels of data from various radiometers as well as real and simulated data fields.A future system of stereoscopic satellites would be comprised of both low orbiters (as suggested by Lorenz and Schmidt [20], [19]) and a global system of geosynchronous satellites. The low earth orbiters would provide stereo coverage day and night and include the poles. An optimum global system of stereoscopic geosynchronous satellites would require international standarization of scan rate and direction, and scan times (synchronization) and resolution of at least 1 km in all imaging channels. A stereoscopic satellite system as suggested here would make an extremely important contribution to the understanding and prediction of the atmosphere.  相似文献   

17.
The development of significantly improved representations of solar EUV inputs for computer-aided investigations of the terrestrial thermosphere and ionosphere has become attractive particularly for the present solar cycle which has been covered by reasonably complete and continuous EUV observations from the AE-E Satellite. These representations try to satisfy some rather incongruous requirements of spectral detail, regarding (a) the strong wavelength-dependence in the terrestrial atmospheric cross sections of the various types of EUV photon interactions, (b) the great differences in the relative amplitudes of the various types of variations in the full-disk fluxes of solar emissions at different wavelengths, and (c) the persisting desire to use only a small number of daily indices as actual input variables for computational models supposed to cover the entire EUV wavelength range (remembering the great success of empirical thermospheric models using only two indices). These general physical and specific aeronomical demands indeed outline a very difficult task. The present study, based mainly on AE-E satellite observations during 1976–1979, represents an exploratory step, only clarifying some important developmental aspects, without recommending any specific formulations for immediately practicable adoption in aeronomical modelling at this time.  相似文献   

18.
Since its launch in 1978 the International Ultraviolet Explorer (IUE) satellite observatory has been used to record ultraviolet spectra of nearly two dozen comets. These observations have been applied principally to studies of the composition, chemistry and evolution of the gaseous coma and more recently, with the substantially increased data base, to comparative analyses. The observations of Comets Bowell (1982 I) and Cernis (1983?) at a heliocentric distance of ≈ 3.4 AU show these two comets to be virtually identical and pose problems for water ice vaporization models. The most significant recent result from IUE was the discovery of S2 in the Earth-approaching comet IRAS-Araki-Alcock (1983d) and the use of the S2 emission as a monitor of short-term variations in cometary activity. In early 1984, periodic comet Encke was observed for the second time by IUE, this time post-perihelion.  相似文献   

19.
Images obtained by the Miniature Integrated Camera and Imaging Spectrometer (MICAS) experiment onboard the Deep Space 1 spacecraft which encountered comet 19P/Borrelly on September 22nd 2001 show a dust coma dominated by jets. In particular a major collimated dust jet on the sunward side of the nucleus was observed. Our approach to analyse these features is to integrate the observed intensity in concentric envelopes around the nucleus. The same procedures has been used on the Halley Multicolour Camera images of comet 1P/Halley acquired on March 14th 1986. We are able to show that at Borrelly the dust brightness dependence as a function of radial distance is different to that of Halley. At large distances both comets show constant values as the size of the concentric envelopes increases (as one would expect for force free radial outflow). For Halley the integral decreases as one gets closer to the nucleus. Borrelly shows opposite behaviour. The main cause for Halley's intensity distribution is either high optical thickness or particle fragmentation. For Borrelly, we have constructed a simple model of the brightness distribution near the nucleus. This indicates that the influence of deviations from point source geometry is insufficient to explain the observed steepening of the intensity profile close to the nucleus. Dust acceleration or fragmentation into submicron particles appear to be required. We also estimate the dust production rate of Borrelly with respect to Halley and compare their dust to gas ratios.  相似文献   

20.
The STructure and Atmospheric Turbulence Environment (STATE) experiment was conducted during the second week of June 1983 at Poker Flat Research Range, Alaska. The measurements focus on a study of the middle atmosphere dynamics by comparison between in-situ probe measurements and MST radar measurements. Rocket launchings were conducted at three periods which were selected by monitoring the doppler velocity spectra of the MST radar.The STATE program has included the efforts of several scientists in planning and carrying out the ground-based and rocket measurements. An overview of the program is given together with some preliminary results. The regions in intense backscatter signals detected by the MST radar are shown to correlate with large irregularities in the electron profiles measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号