首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
One of the most characteristic features of the summer mesopause at high latitudes is the very low temperature. Earlier measurements have shown temperatures in the range down to 135 K around 86 km altitude, whereas the most recent in situ measurements have revealed temperatures still much lower than that in a rather wide altitude region. The reasons for these low temperatures are to be found in the dynamics of the strato- and mesospheres. Upwinds and gravity wave activity over the summer hemisphere cause efficient cooling of the atmosphere.Also other effects are caused by the updrafts. The vertical transport velocity for important minor constituents is increased, which for instance causes the concentration of water vapor around the mesopause to be enhanced by large factors. This situation is of major importance for the possibility of forming noctilucent clouds (NLC).NLC are believed to be composed of small water ice particles, which because of the low temperatures can be formed on existing condensation nuclei. Two of the main questions regarding the formation of NLC concern the water vapor budget of the upper mesosphere and the origin of the condensation nuclei.This paper gives a general introduction to mesospheric physics and composition. Some results from recent satellite and rocket experiments are reviewed and the campaign layout and the performed experiments within the MAP project CAMP are described. The results from the different experiments are presented in four accompanying papers on CAMP results.  相似文献   

2.
Observations of solar-flare ionization in the mesosphere can be made using coherent-scatter radar systems. The scattered power profiles they measure in the 60–90 km altitude region is a function of the ion concentration gradient and the intensity of turbulent mixing at each atltitude. By comparing the power profiles before, during and after a solar flare, it is possible to estimate the ion production rate during the flare as a function of altitude and time. This analysis is used to compare the ion production rates with generally accepted ion-chemical models. Comparisons are made with ion production rates estimated from the solar X-ray flux for the same flare made by geostationary satellites.  相似文献   

3.
利用中国廊坊站(39.4°N,116.7°E)流星雷达在2012年4月1日至2013年3月31日的水平风场观测数据,分析廊坊上空80~100km的中间层与低热层(Mesosphere and Lower Thermosphere,MLT)大气平均纬向风和经向风的季节变化特征.结果表明平均纬向风和经向风都表现出明显的季节变化特征.平均纬向风在冬季MLT盛行西风,极大值位于中间层顶,随高度增加西风减弱;在夏季中间层为东风,低热层为强西风,风向转换高度约为82km.平均经向风在冬季以南风为主,在夏季盛行北风.纬向风和经向风在春秋两季主要表现为过渡阶段.流星雷达观测结果与WACCM4模式和HWM93模式模拟的气候变化特点基本一致,但WACCM4模式纬向风和经向风风速偏大,而HWM93模式纬向风和经向风风速偏小.   相似文献   

4.
The electron density profile in the equatorial mesosphere was measured during sunrise time over Thumba(dip lat= 0.6°S). The measurements were carried out in the altitude range 60 to 100 km using rocketborne probes. A sharp layer of ionisation was observed around 80 km with electron density about 108m?3. It is suggested that hydrated ions are the main constituents of this layer.  相似文献   

5.
The decay times of meteor radar echoes have been used for decades to investigate characteristics of the mesosphere and lower thermosphere (MLT) region. As the meteor echo decay time depends on background atmospheric parameters, in the present communication, we examine the seasonal variation of the vertical distributions of underdense meteor echo decay times with respect to echo strength. Observations from two similar radars located at two distinct geographical locations, Thumba (8.5°N, 77°E) and Eureka (80°N, 85.8°W) were used for the present study. Here, the radar received signal power is categorized into strong and weak echoes and vertical profiles of their decay times are constructed. It has been noticed that the monthly mean decay time vertical profile turning altitude (i.e., inflection point) varies in the range of 80–87?km of altitude depending on latitude. The turning altitude is observed at relatively lower heights in the winter than in summer at both the latitudes. The present analysis shows that the meteor decay time below the mean turning altitude follows a decreasing trend with decreasing altitude, which is quite distinct to the behaviour of ambipolar diffusion. It is also observed that there is a difference in mean decay time of strong and weak echoes below 90?km of altitude, which is very prominently seen at lower altitudes. This difference shows a seasonal pattern at high latitude, but does not show any seasonal variation at low latitude. The present results are discussed in light of current understanding of the meteor decay time.  相似文献   

6.
MST radar studies at low latitude stations have documented regions in the mesosphere from where enhanced echoes (Low Latitude Mesospheric Echoes (LMEs)) are observed. Such echoes cannot, in general, be explained by considering the dynamical aspects (such as turbulence, winds, waves, etc.) of the region alone. Mesospheric dust/aerosols can enhance the radar echoes considerably and dust is known to exist at all heights and latitudes of the mesosphere. This study investigates the presence of dusty plasma in the mesosphere through the heterogeneous ion-chemistry of the region.Dust of meteoric origin is incorporated in the conventional ion chemistry scheme and the equilibrium height profiles of charged and neutral dust densities corresponding to effective dust sizes (radii) of 1, 10 and 30 nm are computed for the equatorial quiet daytime conditions.The model derived dust density profiles show structures with respect to dust size, height and season that are indicative of the possible role of mesospheric dust in the production/enhancement mechanisms of the LMEs observed over the equatorial station at Gadanki (13.5°N, 79.2°E), India.  相似文献   

7.
在大功率微波照射下,极区中层夏季回波(PMSE)会立刻消失,该现象被称为极区中层加热现象.在大功率微波照射极区中层时,电子在微波电场加速下产生的定向运动速度与热运动速度可以比拟,极区中层的尘埃等离子体服从双麦克斯韦分布.基于双麦克斯韦分布下尘埃粒子充电理论给出极区中层尘埃粒子的电荷分布,比较了大功率微波对极区中层加热前和加热时,尘埃粒子电荷以及极区中层电子浓度的变化.结果表明,采用大功率微波装置加热极区中层会影响电子对尘埃粒子的充电进而导致电子浓度变化,这对解释极区中层加热现象具有重要意义.   相似文献   

8.
In the 95km height region of the atmosphere, ground-based techniques made an important contribution to the CIRA 72 [1] wind model. Recent wind measurements from a partial reflection experiment at 44S covering one and a half years are presented and compared with CIRA 72. The zonal wind component compares favourably, although the measured values are more easterly above 80km in autumn and winter; a feature of the autumn winds is a temporary easterly reversal above 90km. Winter mesospheric winds can be very disturbed. The summer mesosphere easterly maximum appears earlier in the season and at a higher altitude than the model. A much poorer comparison is shown between the measured meridional wind component and the 1969 model of Groves [2].  相似文献   

9.
The variability and systematic variations of the properties of the upper mesosphere and lower thermosphere are probably the least well known aspects of the terrestrial atmosphere. Satellite measurements of this region are very limited and rocket and remote sounding techniques do not provide comprehensive coverage. Progress is being made in theoretical studies of this region, primarily with regard to tidal effects, and some progress is being made in analyzing the relatively sparse experimental data that are available. Turbulence dynamics of the region has been studied by analyzing structure measurements at Kwajalein, wind data from Natal and systematic variations of the turbopause altitude determined from measurements of the diffusive separation of argon. One question that is being raised at this time, and it is appropriate at a time near solar maximum, is the extent of solar activity control of the properties of this region of the atmosphere. The occurrence rates and magnitudes of the turbulent diffusivity in the 70 to 90 km altitude region appear to correlate with solar activity with a time lag, as do also the incidence of aurora and the atomic oxygen green line intensity. Solar cycle dependence has been identified in mean zonal wind speeds in the 65 to 110 km altitude region above Saskatoon and in lower thermosphere temperatures measured at Heiss Island and at St. Santin. Millstone Hill data show that the mean meridional wind changes during a solar cycle. Solar cycle variations have also been detected in the stratosphere and troposphere.  相似文献   

10.
作为中间层和热层的边界层,中间层顶存在多种能量交换方式,是大气能量耦合的重要区域。本文利用部署于中国科学院廊坊临近空间大气探测站的钠荧光多普勒激光雷达2013年的观测数据,研究了廊坊上空中间层顶区域大气温度的年度和季节分布特性,并分析了影响温度分布的多种因素。年平均温度廓线图显示,中间层顶位于约97.5 km高度处,温度约191.2 K。受放热化学反应的影响,年平均温度廓线91 km高度处出现了一个198 K的相对温度高点。中间层顶区域大气温度的季节分布受太阳辐射和大气动力学因素综合影响,夏季在大气动力学影响下,中间层顶高度较低,位于88 km高度处,温度也较低,约177 K;冬季太阳辐射起主导作用,中间层顶位于99 km高度处,温度为181 K。通过拟合月平均温度分析了中间层顶区域大气温度年变化和半年变化的振幅和相位特征。结果显示,中间层顶区域上部温度分布主要受太阳辐射的影响;在中间层顶区域下部,大气波动主导了温度分布。   相似文献   

11.
Measurements of various parameters in both Arctic and Antarctic mesosphere are available in the literature. These have been first examined to identify the similarities and differences between them in the two polar regions. Then an attempt has been made to reproduce them using an ion-chemical scheme in which both positive and negative ion processes have been included. Temperature and nitric oxide density are found to play a crucial role in the formation of these features. Finally a theoretical model of ion composition for Antarctic summer noontime condition is given.  相似文献   

12.
In this review article we summarize recent results in the coupling of the stratosphere–mesosphere during stratospheric sudden warming (SSW) events. We focus on the role of planetary and gravity waves in driving the middle atmosphere circulation and illustrate the stratosphere–mesosphere coupling during undisturbed wintertime circulation, during an SSW event, and after an SSW event during the formation of an elevated stratopause using simulations of past Arctic and Antarctic winters from the Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM). We illustrate the transition of the polar stratopause from being a gravity wave driven phenomena to a planetary wave driven phenomena during SSW events and its subsequent reestablishment and control by gravity waves. We also examine the synoptic structure of the stratosphere, mesosphere, and lower thermosphere using SD-WACCM data fields that show the structure of the vortex during specific dynamical events in both hemispheres. We illustrate the longitudinal asymmetry in the thermal structure in the stratosphere and mesosphere driven by differences in circulation over the polar cap regions during an SSW event. We complement this analysis of the middle atmosphere circulation with a classification of both the Arctic and Antarctic winters since 1979 into major, minor, elevated stratopause or quiet winters based on the level of disturbance using the Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis data. From the MERRA data we find that the combined occurrences of both major and minor warmings in the Arctic have remained constant over the past three decades while we find a minor increase in their occurrences in the Antarctic.  相似文献   

13.
We compared 8 years of ozone measurements taken at Lindau (51.66° N, 10.13° E) at altitudes between 40 and 60 km using the microwave technique with the CIRA ozone reference model that was established 20 years ago (Keating et al., 1990). We observed a remarkable decrease in ozone density in the stratopause region (i.e., an altitude of 50 km), but the decrease in ozone density in the middle mesosphere (i.e., up to 60 km in altitude) is slight. Likewise, we observed only a moderate decrease in the atmospheric region below the stratopause. Other studies have found the strongest ozone decrease at 40 km and a more moderate decrease at 50 km, which is somewhat in contradiction to our results. This decrease in ozone density also strongly depends on the season. Similar results showed model calculations using the GCM COMMA-IAP when considering the increase in methane. In the lower mesosphere/stratopause region, the strongest impact on the concentration of odd oxygen (i.e., O3 and O) was observed due to a catalytic cycle that destroys odd oxygen, including atomic oxygen and hydrogen radicals. The hydrogen radicals mainly result from an increase in water vapor with the growing anthropogenic release of methane. The finding suggesting that the stratopause region is apparently attacked more strongly by the water vapor increase has been interpreted in terms of the action of this catalytic cycle, which is most effective near the stratopause and amplified by a positive feedback between the ozone column density and the ozone dissociation rate, thereby chemically influencing the ozone density. However, the rising carbon dioxide concentration cools the middle atmosphere, thereby damping the ozone decline by hydrogen radicals.  相似文献   

14.
We present the results of a streamer-fluid model used to investigate the electrodynamical coupling between the troposphere and upper atmosphere due to the penetration of lightning electric fields into the mesosphere and the lower ionosphere, generating sprites. The model solves the continuity equation for electrons and ions coupled to Poisson equation. The dominant physical response of the atmosphere is the formation of a screening-ionization wave. The wave shields the atmosphere above it from the action of the lightning field and, together with the conductivity reduction below it due to attachment, the wave amplifies the total field below it, allowing for the penetration of intense electric fields in the mesosphere as it propagates downwards into regions of higher density that compress the wave. This is the key physical mechanism for sprite inception. We evaluated the effects of the thundercloud charge geometry, lightning current waveshape, atmospheric conductivity, via different electron density profiles, and the effect of ionization, attachment and electron mobility coefficients in the electrical breakdown process, related to halo production, and sprite streamer initiation. The results showed that electrons with higher mobility are more efficient in shielding the lightning electric field before breakdown, causing delay, and they contribute to the formation of the streamer seed after breakdown, anticipating the sprite streamer inception. Similarly, a higher effective ionization rate, produced by modifications in the attachment and ionization coefficients, anticipates sprite inception. The simulations with 6 different electron density profiles, and therefore conductivities, spanning 4 orders of magnitude, showed that the altitude of breakdown and sprite initiation, as well as their time delays from the lightning discharge are directly related to atmospheric conductivity: higher conductivities produce halo and sprite inception at lower altitudes with longer delays and may hinder sprite formation. We document that variations of 30 times in the lightning current leads to sprite initiation altitudes in the range 66.0–73.5 km, with delays between 1.550 and 34.500 ms, while variations of 4 orders of magnitude in the conductivity profile lead to initiation altitudes 61.0–70.6 km, with delays in the range 3.825–9.825 ms. Consequently, we suggest that lightning characteristics dominate over atmospheric parameters in determining sprites’ initiation altitude and delay. The simulation of a −CG, with a constant current of 30 kA, did not produce a sprite seed, confirming an asymmetry in the response of the atmosphere to positive and negative lightning. This is due to the free electron drift direction that is away from the screening ionization wave, preventing the formation of the streamer seed for the great majority of −CGs. The same does not apply to halos, which depend on the occurrence of breakdown and can be produced by discharges of both polarities.  相似文献   

15.
Radio occultation measurements of the temperature structure of the Venus atmosphere have been obtained during seven occultation “seasons” extending from December 1978 to December 1983. Approximately 123 vertical profiles of temperature from about 40 km to about 85 km altitudes have been derived. Since these measurements cover latitudes from both poles to the equator, they have shown the latitudinal dependence of thermal structure. There is a smooth transition from the troposphere to the mesosphere at latitudes below about 45°, with the tropopause at about 56 km. The troposphere then rises to about 62 km in the “collar cloud” region between about 60° and 80° latitude, where a strong temperature inversion (up to 30 K) is present. In the polar areas, 80°–90°, the mesosphere becomes isothermal and there is no inversion. This latitudinal behavior is related to the persistent circulation pattern, in which a predominantly zonal retrograde motion at latitudes below 45° gradually changes to a circumpolar vortex at the “collar cloud” latitudes. Indeed, the radio occultation data have been used in a cyclostrophic balance model to derive zonal winds in the Venus atmosphere, which showed a mid-latitude (50°–55°) jet with a speed of about 120–140 ms?1 at about 70 km altitude /1,2/. The observations obtained in 1983 and 1984 have shown that above the tropopause there is considerable temporal variability in the detailed thermal structure, suggesting that the persistent circulation pattern is subject to weather-like variability.  相似文献   

16.
17.
Electron density values were measured during morning hours over Thumba. The results show that electron density in mesosphere is more during summer than during winter for same solar zenith angle. The temperature measurements carried out on the same day during night hours show that mesosphere is hotter in winter and cooler in summer over Thumba. The electron density and temperature are anti-correlated. The results are explained in terms of temperature effects and other meteorological effects.  相似文献   

18.
一枚Chaff火箭在87.4km高度测量到高达0.33s-1的风切变剖面,相信这个切变值是中层大气曾经测量到的最大切变值.在这个异常大风切变层内,垂直速度扰动谱在浮力子区,惯性子区,和粘性子区有谱斜率-3.10,-1.65,和-7.11,这个观测与中性密度扰动一致.计算的内尺度和浮力尺度与扰动谱中的崩溃点不一致,这个结果与中性密度扰动不一致.讨论了湍流和重力波之间的关系,结果表明,增强湍流与波场饱和有好的联系.   相似文献   

19.
美国SDI计划的“多层拦截”中,“助推段拦截”是最主要的一层。降低导弹助推段飞行高度,利用稠密大气层使其免受攻击,是公认的有效的反拦截措施。本文分析了降低助推段高度的困难,并对一个假想的起飞质量为30,000kg的三级固体洲际导弹采用不同方法降低助推段高度进行了初步研究。定量分析表明,将Ⅱ,Ⅲ级燃烧时间缩短一半,从20km以上高度快速推进,可能在导弹飞行条件不太恶化、有效载荷损失约10%的条件下,使导弹熄火高度控制在80~90km.而实现此目的的工程条件,经过一定努力是可以具备的。  相似文献   

20.
本文通过5年的电离层吸收观测资料与平流层增温事件对比及吸收资料的谱分析,得出以下几点初步结论:1)极区平流层增温事件的影响可能通过子午环流和行星波传播,经过5—9天后到达中低纬地区,从而引起那里的电离层吸收变化;2)冬季行星波沿子午方向的平均速度大约在10m/s到15m/s之间变化;3)全年均有周期为32天、18天、10天、8天和2天的行星波出现,它对大气湍流系数有明显影响。计算得出行星波扰动引起中层的NO浓度偏离未扰值可高达40%。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号