共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive studies have been conducted concerning individual mass, temporal and positional distribution of submicron rocky ejecta existing in the satellite-planetary gravitational sphere of influence. The transit time of the major portion of the ejecta that is transported from the satellite's gravitational sphere of influence to the planetary magnetopause is about one week and represents a mass loading pulse occurring each satellite orbit. The mass-flux distributions of lunar ejecta at the surface of the magnetopause for a complete lunar orbit are presented. Spatial mass densities of lunar ejecta in specific zones of the magnetosphere provide a means to compare sporadic interplanetary dust spatial mass densities in the same zones. 相似文献
2.
Recent hypervelocity studies have been conducted which simulate the collision of interplanetary dust with rocky planetary satellite surfaces. Preliminary flux-mass distributions of micron and submicron ejecta from these hypervelocity impact studies have been determined. Several models of the flux-mass distribution of primary interplanetary dust are used to determine ratios of satellite surface ejecta and primary meteoroid flux-mass distributions. The results are used in a second model to determine the ejecta spatial mass densities near the surface of the satellite. 相似文献
3.
We discuss the potential (charge) on dust particles in various environments. We first consider the classical case of a single isolated dust particle. In conditions which apply to planetary dust rings, the exact value of the dust potential depends critically on several effects (e.g. secondary electron emission, photoelectric efficiency) which are not well known for small dust particles of relevant material and surface conditions. In dust clouds of high dust densities the classical approach fails to give the correct value of the dust potential due to the neglect of collective effects. In terms of an ordering parameter P = aμNd0/ n0 (dust radius in microns × cloud dust density/exterior plasma density) the collective effects on the dust potential become apparent at P ~ 10 ?6. For increasing values of P the collective effects increase, whence the dust potentials decrease and eventually approach zero. 相似文献
4.
A comet nucleus considered as an aggregate of interstellar dust would produce a mist of very finely divided (radius ~ 0.01 μm) particles of carbon and metal oxides accompanying the larger dust grains. These small particles which are very abundant in the interstellar dust size spectrum would provide substantial physical effects because of their large surface area. They may show up strongly in particle detectors on the Halley probes. A strong basis for serious consideration of these particles comes from the other evidence that interstellar dust grains are the building blocks of comets; e.g. (1) the explanation of the “missing” carbon in comets; (2) The S 2 molecule detection which suggests that the comet solid ice materials have been previously subjected to ultraviolet radiation (as are interstellar grains) before aggregation into the comet; (3) the predicted dust to gas ratio. 相似文献
5.
Planetary protection has been an important consideration during the process of designing the Mars Observer mission. It affected trajectory design of both the interplanetary transfer and the orbits at Mars; these in turn affected the observation strategies developed for the mission. The Project relied mainly on the strategy of collision avoidance to prevent contamination of Mars. Conservative estimates of spacecraft reliability and Martian atmosphere density were used to evaluate decisions concerning the interplanetary trajectory, the orbit insertion phase at Mars, and operations in orbit at Mars and afterwards. Changes in the trajectory design, especially in the orbit insertion phase, required a refinement of those estimates. 相似文献
6.
Various types of organic compounds have been detected in Jupiter, Titan, and cometary coma. It is probable that organic compounds were formed in primitive Earth and Mars atmospheres. Cosmic rays and solar UV are believed to be two major energy sources for organic formation in space. We examined energetics of organic formation in simulated planetary atmospheres. Gas mixtures including a C-source (carbon monoxide or methane) and a N-source (nitrogen or ammonia) was irradiated with the followings: High energy protons or electrons from accelerators, gamma-rays from 60Co, UV light from a deuterium lamp, and soft X-rays or UV light from an electron synchrotron. Amino acids were detected in the products of particles, gamma-rays and soft X-rays irradiation from each gas mixture examined. UV light gave, however, no amino acid precursors in the gas mixture of carbon monoxide, nitrogen and nitrogen. It gave only a trace of them in the gas mixture of carbon monoxide, ammonia and water or that of methane, nitrogen and water. Yield of amino acid precursors by photons greatly depended on their wavelength. These results suggest that nitrogen-containing organic compounds like amino acid precursors were formed chiefly with high energy particles, not UV photons, in Titan or primitive Earth/Mars atmospheres where ammonia is not available as a predominant N-source. 相似文献
7.
Spacecraft measurements of the plasma populations and magnetic fields near Jupiter and Saturn have revealed that large magnetospheres surround both planets. Magnetic field measurements have indicated closed field line topologies in the dayside magnetospheres of both planets while plasma instruments have shown these regions to be populated by both hot and cold plasma components convected azimuthally in the sense of planetary rotation. By using published data from the Voyager Plasma Science (PLS), Low Energy Charged Particle (LECP), and Magnetometer (MAG) instruments, it is possible to investigate the validity of the time stationary MHD momentum equation in the middle magnetospheres of Jupiter and Saturn. At Saturn, the hot plasma population is negligible in the dynamic sense and the centrifugal force of the cold rotating plasma appears to balance the Lorentz force. At Jupiter, the centrifugal force balances ~25% of the Lorentz force. The remaining inward Lorentz force is balanced by pressure gradients in the hot, high-β plasma of the Jovian magnetodisk. 相似文献
8.
A wide variety of organic compounds, which are not simple organics but also complex organics, have been found in planets and comets. We reported that complex organics was formed in simulated planetary atmospheres by the action of high energy particles. Here we characterized the experimental products by using chromatographic and mass spectrometric techniques. A gaseous mixture of CO, N2 and H2O was irradiated with high energy protons (major components of cosmic rays). Water-soluble non-volatile substances, which gave amino acids after acid-hydrolysis, were characterized by HPLC and mass spectrometry. Major part of the products were complex compounds with molecular weight of several hundreds. Amino acid precursors were produced even when no water was incorporated with the starting materials. It was suggested that complex molecules including amino acid precursors were formed not in solution from simple molecules like HCN, but directly in gaseous phase. 相似文献
10.
In this short review, we limit our comments to the different theories which have been proposed to explain the observed features of the terrestrial, Jovian and Saturnian radio-emissions, and mainly to the high frequency portion of the spectra. 相似文献
11.
A low power high reliability impact sensor based on the discharge of a parallel plate capacitor is described. The choice of a surface area of about 1000 cm 2 and a penetration thickness of 50 micrometers will provide data on the flux density of cometary dust particles in the 5 micrometers diameter range (10 −10g). A high noise immunity promotes excellent reliability under conditions of heavy spacecraft bombardment and high plasma densities in the late stages of the 500 km approach distance. Self-limiting of the event rate compression system also provides flux data at arbitrarily high impact rates. The capacitor sensor will be located on the external face of the outer dust shield of Giotto Spacecraft and it will be a part of the DIDSY experiment. 相似文献
12.
Polarization measurements over the surfaces of the Moon, Mercury, Mars and Saturn's rings, and global data for the Galilean satellites, have been recorded with telescopes in France. A number of asteroids were measured by B. Zellner in USA. The curves of polarization are diagnostic of the micro-texture of the surface, and demonstrate that all the atmosphereless Solar System objects so far observed (except Callisto trailing hemisphere) have their surfaces covered with a regolith of fines, as for the Moon, which is produced by the cumulative effect of meteoroid impacts. For all the silicaceous objects down to a diameter of 700 km, namely Mars, Mercury, the Moon, Callisto (for the apex hemisphere), the mean grain sizes are no larger than 20um. The asteroids have coarser grained regoliths, apparently because of their smaller gravitational escape velocities. The C type asteroid surfaces, assumed to be carbon rich, appear finer grained than the silicaceous S types. The M astereroids assumed to be metallic, are also covered with small fragments, becuase metals loose their ductile properties at low temperature and behave at impact like brittle silicates. The trailing hemisphere of Callisto has a texture almost reminiscent of bare rocks. Orbital considerations to excluse significant impact effects, and a scenario for the past evolution of the satellite are implied.The planet Mars, with wind effects due to a tenuous atmosphere, several intense past volcanic episodes, a high tectonic activity and a permafrost underground has a more diversified surface regolith. A detailed analysis was achieved with photopolarimeters placed on board the soviet Mars Orbiter Spacecraft MARS-5.The Saturn's rings, anisotropic multiple scattering effects are observed and exhibit variations often in few days or weeks. Mutual interactions and gravitational forces are at work to produce organized structures, whereas disorganization forces occur and the competition produced ephemeral situations. 相似文献
13.
The study of planetary magnetospheres allows us to understand processes occurring in the Earth’s magnetosphere by showing us how these processes respond under different conditions. We illustrate lessons learned about the control of the size of the magnetosphere by the dynamic pressure of the solar wind; how cold plasma is lost from magnetospheres; how free energy is generated to produce ion cyclotron waves; the role of fast neutrals in a planetary magnetosphere; the interchange instability; and reconnection in a magnetodisk. Not all information flow is from Jupiter and Saturn to Earth; some flows the other way. 相似文献
14.
The principal observational properties of silicate core-organic refractory mantle interstellar dust grains in the infrared at 3.4 microns and at 10 microns and 20 microns are discussed in terms of the cyclic evolution of particles forming in stellar atmospheres and undergoing subsequent accretion, photoprocessing and destruction (erosion). Laboratory plus space emulation of the photoprocessing of laboratory analog ices and refractories are discussed. The aggregated interstellar dust model of comets is summarized. The same properties required to explain the temperature and infrared properties of comet coma dust are shown to be needed to account for the infrared silicate and continuum emission of the beta Pictoris disk as produced by a cloud of comets orbiting the star. 相似文献
15.
UV induced syntheses of organic compounds from the main atmospheric constituents can be a very important source of organics in a given planetary environment provided the atmosphere is in a reduced state. The evolution of a CO 2 rich medium only produces very low yields of formaldehyde and related oxygenated compounds. Considering a CO rich atmosphere, the photochemical yield of O-organics formation is much higher, when the synthesis of N-organics remains difficult. The most favourable atmosphere as far as photochemical organic synthesis is concerned is a CH 4 rich milieu.. The photochemical evolution of such a CH 4 atmosphere under UV irradiation leads to a chain of various organics, the complexity of which increases together with the number of pathways involved in their formation. Their complexity also closely correlates with their UV photoabsorption spectrum: the more complex they are, the more shifted is their UV spectrum toward the visible range. Direct photodissociation of methane requires UV photon of wavelengths shorter than about 145 nm. It mainly produces ethane which absorbs UV at wavelengths shorter than about 160 nm, and acetylene, that presents an absorption spectrum extending up to 200 nm. This shift still continuously increases with further increase in number of C atoms. Unsaturated hydrocarbons with 4 and more C atoms have UV absorption characteristics including noticeable band structures in the 250–300 nm range. This trend has very important implication in the photochemical behaviour of a CH 4-rich planetary atmosphere, as it induces many catalytic processes. The occurrence of such processes is closely related to vertical atmospheric and energy deposition profiles. Titan provides a very good example of such a UV-directed organic atmospheric chemistry. 相似文献
16.
The observable effects of Raman scattering on the spectra of the giant planets may provide new information on the composition and structure of these atmospheres. Satellite observations have already shown the influence of Raman scattering on the UV continuum albedo. A cross correlation technique is presented for detecting rotational and vibrational transitions of the Raman active gases in the atmosphere. This technique has been applied to ground-based visible spectra of Venus, Jupiter, Saturn and Uranus. Extension of this method into the UV would improve the detectability of the Raman lines because the ratio of Raman to Rayleigh cross section increases with decreasing wavelength. The technology currently exists to efficiently obtain high signal-to-noise ratio UV spectra through the use of silicon diode array detectors. Application of the cross-correlation technique to UV spectra obtained from space vehicles would give us a new important probe of the structure and composition of planetary atmospheres by enabling us to use the UV spectra of a planet to observe that would normally be an infrared molecular transition. 相似文献
17.
Rendezvous Missions to Comets lead to low velocities at the nucleus of the comet. The resulting impact velocity of the cometary dust on a target will range between 10 and 400 m/s. The dust particle which impacts on a target can be collected for a subsequent in-situ analysis. The collection efficiency of a target depends in addition to obvious geometrical conditions upon the surface of the target. The surface characteristics can be divided into two groups: • “dirty” surfaces, covered with silicate or hydrocarbon compounds (for example vacuum grease), • “clean” surfaces, like gold (with additional sputtering).
This paper deals with the experimental and theoretical investigation of the collection efficiency of “clean” targets. Laboratory experiments are described which were conducted at the Technische Universität München, Lehrstuhl für Raumfahrttechnik, and the Max-Planck-Institut für Kernphysik, Heidelberg. In both experiments an electromagnetic accelerator is used to accelerate different types of dust in vacuum to velocities between 10 and 400 m/s. The target is then examined under the microscope and a secondary ion mass spectrometer (which is a model of the laboratory carried on board of the spacecraft for “in situ” analysis). The adhesion of the dust grains at the target is evaluated experimentally in an ultracentrifuge. 相似文献
18.
The height–season and year-to-year regularities of parameters of first and second spatial harmonics determine the structure of the stratosphere and mesosphere circulation and its variability. In the period 1992–2002 at heights 0–55 km, the amplitudes and phases of the first and second spatial harmonics in the field of temperature, geopotential height, zonal and meridional wind were calculated by the method of harmonic decomposition. Dispersion (standard or mean square deviation) of their day-to-day and year-to-year variations was calculated by their wavelength constants. Height and season patterns of variability have been estimated. The difference in height–longitude variability for wave numbers m = 1 and 2 has been discovered. At the same time, the intensity of wave disturbances for m = 1 is less than for m = 2 excluding the polar areas, where a significant variability appears at the heights 0–55 km. There is also a tendency for the intensity of year-to-year variations to decrease in comparison with day-to-day variations. In cold and warm periods the amplitude of perturbation waves with m = 2 both for day-to-day and year-to-year variations is greater than for waves with m = 1. Transient height areas in the interval of 20–30 km are more distinct for day-to-day variations of polar area. 相似文献
19.
Evolution of a system consisting of a great number of bodies that are gravitationally interacting and aggregating in contacts is considered. Body motions take place in the gravitational field of a central massive body (Sun or planet) in the same plane and at the initial time of system evolution orbits of all bodies are circular. It is shown that during evolution of the protoplanetary cloud, ring zones of matter rarefaction and condensation develop. Development of the condensation zones leads to the formation of planets, the most part of which acquire a direct rotation about their axes. In the case under consideration, approximate agreement between the law of planetary distances and that of geometric progression takes place as it is observed in planetary and satellite systems. The formation of the terrestrial planets and Jovian planets has been simulated. The principal numerical results have been obtained through digital simulation of planetary accumulation. 相似文献
20.
Classical planetary ephemeris construction comprises three major steps which are to be performed iteratively: numerical integration of coupled equations of motion of a multi-body system (propagator step), reduction of observations (reduction step), and optimization of model parameters (adjustment step). In future, this approach may become challenged by further refinements in force modeling (e.g. inclusion of much more significant minor bodies than in the past), an ever-growing number of planetary observations (e.g. the vast amount of spacecraft tracking data), and big data issues in general. In order to circumvent the need for both the inversion of normal equation matrices and the determination of partial derivatives, and to prepare the ephemeris for applications apart from stand-alone solar-system planetary orbit calculations, here we propose an alternative ephemeris construction method. The main idea is to solve it as an optimization problem by straightforward direct evaluation of the whole set of mathematical formulas, rather than to solve it as an inverse problem with all its tacit mathematical assumptions and potential numerical difficulties. The usual gradient search is replaced by a stochastic search, namely an evolution strategy, the latter of which is perfect for the exploitation of parallel computing capabilities. Furthermore, this new approach allows for multi-criteria optimization and time-varying optima. These issues will become important in future once ephemeris construction is just one part of even larger optimization problems, e.g. the combined and consistent determination of a generalized physical state (orbit, size, shape, rotation, gravity, ) of celestial bodies (planets, satellites, asteroids, or comets), and/or if one seeks near real-time solutions. Here, we outline the general idea and exemplarily optimize high-correlated asteroidal ring model parameters (total mass and heliocentric radius), and individual asteroid masses, based on simulated observations. 相似文献
|