首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic risks associated with manned space flight are judged to be of little significance to the general population. The risks may be significant to the irradiated individual, particularly if one focuses attention on the incidence of dominant and chromosomal mutations that are expressed in the first generation offspring. Even so, the risk is not increased to a great extent by the low linear energy transfer (LET) component of the space radiations. It is the presumed high LET component, neutrons especially, that would make the major contribution to the risk, because the relative biological effectiveness (RBE) values for this component, relative to low dose-rate photon irradiation, are between 10 and 40, depending upon the particular genetic effect and dose-rate comparison. The appropriate RBE value would probably be 20 or greater, so that even small neutron doses become magnified in their contribution. Under the assumed condition of protracted exposure to 8 rads of low LET radiation and 2 rads of high LET radiation, or from 48 to 88 rem, the individual's risk of transmitting a new dominant mutation that will be expressed in his immediate offspring is estimated to increase by at least 4% and as much as about 40%. The HZE-particle component is not expected to make a significant contribution to the total risk.  相似文献   

2.
3.
The primary structural and functional arrangement of the different cell types within the CNS are reviewed. This was undertaken with a view to providing a better understanding of the complex interrelationships that may contribute to the pathogenesis of lesions in this tissue after exposure to ionizing radiation. The spectrum of possible CNS radiation-induced syndromes are discussed although not all have an immediate relevance to exposure during space flight. The specific characteristics of the lesions observed would appear to be dose related. Very high doses may produce an acute CNS syndrome that can cause death. Of the delayed lesions, selective coagulation necrosis of white matter and a later appearing vascular microangiopathy, have been reported in patients after cancer therapy doses. Lower doses, perhaps very low doses, may produce a delayed generalised CNS atrophy; this effect and the probability of the induction of CNS tumors could potentially have the greatest significance for space flight.  相似文献   

4.
Ultra High Molecular Weight Polyethylene (UHMWPE) is a polymer widely used as a radiation shielding material in space flight applications and as a bearing material in total joint replacements. As a long chain hydrocarbon based polymer, UHMWPE’s material properties are influenced by radiation exposure, and prior studies show that gamma irradiation is effective for both medical sterilization and increased wear resistance in total joint replacement applications. However, the effects of space flight radiation types and doses on UHMWPE material properties are poorly understood. In this study, three clinically relevant grades of UHMWPE (GUR 1020, GUR 1050, and GUR 1020 blended with Vitamin E) were proton irradiated and tested for differences in material properties. Each of the three types of UHMWPE was irradiated at nominal doses of 0 Gy (control), 5 Gy, 10 Gy, 20 Gy, and 35 Gy. Following irradiation, uniaxial tensile testing and thermal testing using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were performed. Results show small but significant changes in several material properties between the control (0 Gy) and 35 Gy samples, indicating that proton irradiation could have a effect on the long term performance of UHMWPE in both medical and space flight applications.  相似文献   

5.
A mathematical model is developed which describes the dynamics of radiation-induced mortality in mammalian populations. It relates statistical biometric functions with statistical characteristics and dynamics of an organism's critical system. In the framework of the model the effects of low and very low dose rates of chronic radiation on mice are simulated. Respectively, thrombocytopoietic and granulocytopoietic systems are considered as the critical ones. To calculate the dynamics of these systems, mathematical models are applied, too. In accordance with experimental data, the mortality model reproduces on quantitative level both increased and decreased mortality rates in populations of LAF1 mice, which were chronically exposed, respectively, to low and very low level radiation. All this makes it feasible to use the model as a basis for risk assessments of low level long-term irradiation.  相似文献   

6.
7.
Total evaluation of cosmic radiation effect with or without discrimination of individualized HZE-ion effects in dry seeds flown for 10 days on STS-9, yielded significant evidence for radiation damage in space. They depend on the biological criteria tested (seed germination, morphogenesis, embryo lethality, mutation rate) which stand for early, physiological and late genetic effects. They are also related to the radiation shielding environment in the space shuttle. Proceeding from these results three direct questions can be posed for present (LDEF-1) and future (ERA-1, D-2) experiments in space: What is the influence of cosmic radiation on cytogenetic repair and ontogenetic restitution processes? Does microgravity disorder the morphogenesis (i.e. growth and cell differentiation)? Is there an interaction between the effects of cosmic radiation and microgravity in eukaryotic plant systems?  相似文献   

8.
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits.  相似文献   

9.
Solar cosmic rays present one of several radiation sources that are unique to space flight. Under ground conditions the exposure to individuals has a controlled form and radiation risk occurs as stochastic radiobiological effects. Existence of solar cosmic rays in space leads to a stochastic mode of radiation environment as a result of which any radiobiological consequences of exposure to solar cosmic rays during the flight will be probabilistic values. In this case, the hazard of deterministic effects should also be expressed in radiation risk values. The main deterministic effect under space conditions is radiation sickness. The best dosimetric functional for its analysis is the blood forming organs dose equivalent but not an effective dose. In addition, the repair processes in red bone marrow affect strongly on the manifestation of this pathology and they must be taken into account for radiation risk assessment. A method for taking into account the mentioned above peculiarities for the solar cosmic rays radiation risk assessment during the interplanetary flights is given in the report. It is shown that radiation risk of deterministic effects defined, as the death probability caused by radiation sickness due to acute solar cosmic rays exposure, can be comparable to risk of stochastic effects. Its value decreases strongly because of the fractional mode of exposure during the orbital movement of the spacecraft. On the contrary, during the interplanetary flight, radiation risk of deterministic effects increases significantly because of the residual component of the blood forming organs dose from previous solar proton events. The noted quality of radiation responses must be taken into account for estimating radiation hazard in space.  相似文献   

10.
基于飞行剖面的作战飞机任务可靠性评估方法   总被引:2,自引:1,他引:2  
针对作战飞机故障数据的特点,分析了作战飞机不同飞行剖面对其任务可靠性的影响.在此基础上,定义了飞行剖面折合系数、建立了作战飞机任务可靠性模型.基于该模型给出了作战飞机在不同飞行剖面下的任务可靠性评估方法.针对想定任务剖面,采用剖面合成的方法把其处理为典型飞行剖面的线性组合,并由此给出了作战飞机在想定剖面下任务可靠性的预测方法.实例表明基于飞行剖面的作战飞机任务可靠性评估方法合理可行,便于工程应用.  相似文献   

11.
Radiation cataract, a non-stochastic effect on the lens, is readily amenable to non-invasive analysis. Thus, it provides the means to assess radiation risk in space and for long-term monitoring of those who frequent that environment. The importance of such evaluations are underscored by the uncertainties associated with the assignment of quality factors for the effects of heavy charged particles constituting cosmic and solar radiation. Experimental studies were conducted using albino rats to evaluate the cataractogenic potential of 570 MeV/amu Argon ions administered as both single and protracted doses. The cataract studies and investigations of quantitative cytopathological changes associated with them indicate that as the dose of heavy particles decreases, the relative biological effectiveness, compared to X rays, increases. Fractionating the exposures not only failed to reduce the cataractogenic effect but caused a dose-dependent enhancement in the time of onset of opacification. Cytopathologically, the damage caused by heavy particles, when compared to low-LET radiation was found to be quantitatively dissimilar but qualitatively identical. In addition, damage which might be consistent with microlesions was not evident. The data indicates that as regards the cataractogenic potential of heavy particles at low doses an assignment of a Quality Factor (QF) of at least 40 may be in order.  相似文献   

12.
Space flight has been shown to affect expression of several cell surface markers. These markers play important roles in regulation of immune responses, including CD4 and CD8. The studies have involved flight of experimental animals and humans followed by analysis of tissue samples (blood in humans, rats and monkeys, spleen, thymus, lymph nodes and bone marrow in rodents). The degree and direction of the changes induced by space flight have been determined by the conditions of the flight. Also, there may be compartmentalization of the response of surface markers to space flight, with differences in the response of cells isolated from blood and local immune tissue. The same type of compartmentalization was also observed with cell adhesion molecules (integrins). In this case, the expression of integrins from lymph node cells differed from that of splenocytes isolated from rats immediately after space flight. Cell culture studies have indicated that there may be an inhibition in conversion of a precursor cell line to cells exhibiting mature macrophage characteristics after space flight, however, these experiments were limited as a result of technical difficulties. In general, it is clear that space flight results in alterations of cell surface markers. The biological significance of these changes remains to be established.  相似文献   

13.
In long duration space experiments Rice caryopses and embryos, which are able to remain alive 10 years (or more) and tolerate extreme physical conditions (temperature, few water content) during irradiation and post-irradiation storage, were used (8, 40, 201 and 457 days on board of Salyut 7, 2107 days on LDEF). In certain experiments (Salyut 7), samples were irradiated either before or after the flight. Effects of the flight and radiosensitivity were observed in Rice seedlings cultivated in in vitro conditions. Statistical results indicate an increase in radiosensitivity when irradiations occur before the flight. Microanalyses were made in different parts of one caryopsis and of one embryo, and the results compared with those of control samples. With caryopses and embryos of the same Rice varieties, but from LDEF, we made the same kinds of experiments to compare results.  相似文献   

14.
When humans move out into the solar system to stay for long durations, the most immediate challenge will be the provision of a life-supporting environment in locations that are naturally devoid of food, air, and water. Life support systems must provide these commodities in all phases of space flight--during intravehicular activity (IVA) and during extra-vehicle activity (EVA). Systems that support human life must provide: overall reliability in the space environment, allowing maintenance and component replacement in space; reduced resupply mass of consumables and spares; for planetary surfaces, the ability to utilize local resources for increased self sufficiency; and the minimized mass power and volume requirements necessary for all space flight systems. This paper will discuss the melding of these technical requirements in such a way as to meet the human needs of space flight.  相似文献   

15.
Experimental animal studies and human observations suggest that the question is not whether or not prolonged space missions will cause cataracts to appear prematurely in the astronauts, but when and to what degree. Historically the major impediment to radiation cataract follow-up has been the necessarily subjective nature of assessing the degree of lens transparency. This has spurred the development of instruments which produce video images amenable to digital analysis. One such system, the Zeiss Scheimpflug slit lamp measuring system (SLC), was incorporated into our ongoing studies of radiation cataractogenesis. It was found that the Zeiss SLC measuring system has high resolution and permits the acquisition of reproducible images of the anterior segment of the eye. Our results, based on about 650 images of the rats lens, and followed over a period of 91 weeks of radiation cataract development, showed that the integrated optical density (IOD) of the lens correlated well with conventional assessment with the added advantages of objectivity, permanent and transportable records and linearity as cataracts become more severe. This continuous data acquisition, commencing with cataract onset, can proceed through more advanced stages. The SLC exhibits much greater sensitivity reflected in a continuously progressive severity despite the artifactual plateaus in staging which occur using conventional scoring methods. Systems such as the Zeiss SLC should be used to monitor astronauts frequent visits to low earth orbit to obtain a longitudinal data-base on the influence of this activity on the lens.  相似文献   

16.
Mutational effects of space flight on Zea mays seeds.   总被引:10,自引:0,他引:10  
The growth and development of more than 500 Zea mays seeds flown on LDEF were studied. Somatic mutations, including white-yellow stripes on leaves, dwarfing, change of leaf sheath color or seedling color were observed in plants developed from these seeds. When the frequency of white-yellow formation was used as the endpoint and compared with data from ground based studies, the dose to which maize seeds might be exposed during the flight was estimated to be equivalent to 635 cGy of gamma rays. Seeds from one particular holder gave a high mutation frequency and a wide mutation spectrum. White-yellow stripes on leaves were also found in some of the inbred progenies from plants displayed somatic mutation. Electron microscopy studies showed that the damage of chloroplast development in the white-yellow stripe on leaves was similar between seeds flown on LDEF and that irradiated by accelerated heavy ions on ground.  相似文献   

17.
Effects of space flight and IGF-1 on immune function   总被引:1,自引:0,他引:1  
We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2 secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.  相似文献   

18.
By the turn of this century, long-duration space missions, either in low Earth orbit or for got early planetary missions, will become commonplace. From the physiological standpoint, exposure to the weightless environment results in changes in body function, some of which are adaptive in nature and some of which can be life threatening. Important issues such as environmental health, radiation protection, physical deconditioning, and bone and muscle loss are of concern to life scientists and mission designers. Physical conditioning techniques such as exercise are not sufficient to protect future space travellers. A review of past experience with piloted missions has shown that gradual breakdown in bone and muscle tissue, together with fluid losses, despite a vigorous exercise regimen can ultimately lead to increased evidence of renal stones, musculoskeletal injuries, and bone fractures. Biological effects of radiation can, over long periods of time increase the risk of cancer development. Today, a vigorous program of study on the means to provide a complex exercise regimen to the antigravity muscles and skeleton is under study. Additional evaluation of artificial gravity as a mechanism to counteract bone and muscle deconditioning and cardiovascular asthenia is under study. New radiation methods are being developed. This paper will deal with the results of these studies.  相似文献   

19.
We have studied the effects of prolonged (up to 175 days) exposure of Lactuca sativa seeds to space flight factors, including primary cosmic radiation heavy ions. The data obtained evidence a significant fourfold increase ofs pontaneous mutagenesis in seeds both with regard to the total number of aberrant cells as well as the formation of single cells with multiple aberrations. Comparison of the present experiment with earlier works shows that the frequency of such aberrations increases with the duration of the flight.  相似文献   

20.
During spaceflights, it is important to measure an astronaut's body mass ('weight'), both for investigating the influence of the space environment on the human body and for monitoring the physical (health) condition of the astronaut. This paper reports the development of a mass measuring device that is compact, user friendly, and has an absolute measuring accuracy better than 60 gram. The measurement accuracy turns out to be restricted by the way a human body is configured by nature and not by the instrument itself, that has an accuracy much better than required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号