首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The definitive data set for the mean thermal structure of the Venusian middle atmosphere is published for the first time. Some recent interim results on a modelling study to interpret the measured thermal field in terms of the global dynamics are also presented. These indicate that (a) the zonal winds on Venus fall to very low values above about 90 km, (b) there is a strong mid-latitude jet which circles the planet approximately every two days, (c) the observed solar tides are dominated by the semi-diurnal component, in agreement with theory.  相似文献   

2.
Although lightning has not been observed in Titan's atmosphere, the presence of methane rain in the troposphere suggests the possibility of electrical activity in the form of corona and/or lightning discharges. Here we examine the chemical effects of these electrical processes on a Titan simulated atmosphere composed of CH4 in N2 at various mixing ratios. Corona discharges were simulated in two different experimental arrays. For the detection of reactive intermediates we used a mass spectrometer to study the main positive ions arising by bombarding low-energy electrons from a hot filament into low-pressure methane. The final stable products, generated by applying a high voltage in a coaxial reactor with either positive or negative polarity, were separated and detected by gas chromatography-Fourier transform infrared spectroscopy and electron impact mass spectrometry (GC-FTIR-MS). Lightning discharges were simulated by a hot and dense plasma generated by a Nd-YAG laser and the final products were separated and detected by GC-FTIR-MS. Corona discharges produce linear and branched hydrocarbons as well as nitriles whereas lightning discharges generate mainly unsaturated hydrocarbons and nitriles. Lightning discharges are about 2 orders of magnitude more efficient in product formation than corona discharges.  相似文献   

3.
Summer duration (SD) is defined here as the time interval between spring and autumn turn around of zonal winds in the stratosphere. SD long-term trends are obtained from analysis of middle stratosphere NCEP and ECMWF data. They are found to be dependent on latitude and altitude. Wind data are available since 1948. The corresponding analysis suggests a breakpoint in the trend at around 1980: SD increases before 1980, and decreases afterwards. Corresponding changes of stratospheric wave activity are analyzed and found to be a major contribution to the SD trends. Long-term computer runs of the Whole Atmosphere Community Climate Model (WACCM 1b) are consistent with these results. Vegetation data on the ground indicate similar trends with a break.  相似文献   

4.
The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun’s atmospheric layers.In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5?Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model.We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs).Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly.  相似文献   

5.
The interhemispheric coupling of the middle atmosphere general circulation is characterized by a global anomaly pattern of the zonal-mean temperature. This pattern reflects an anomalous stratospheric and mesospheric residual circulation, in which a weaker (stronger) stratospheric winter circulation is linked to an upward (downward) shift of its upper mesospheric branch reaching from the summer to the winter pole. This phenomenon is robust in observational data and several middle atmosphere general circulation models. In the present study, the recently proposed mechanism of the interhemispheric coupling is unequivocally proven within the framework of a zonally symmetric model that excludes any additional effects due to resolved waves and non-zonally propagating gravity waves. Two simulations are conducted that differ in the strength of the polar vortex. A weaker polar vortex results in a downward shift of the winter mesospheric gravity wave drag. This leads to changes also in the summer upper mesosphere via a feedback solely between gravity wave breaking and the zonal-mean state. The accompanying temperature anomaly reproduces the pattern of the interhemispheric coupling.  相似文献   

6.
Thermospheric temperature, composition and wind measurements from the Dynamics Explorer satellite (DE-2) are interpreted using a three dimensional, multiconstituent spectral model. The analysis accounts for tides driven by the absorbed solar radiation as well as energy and momentum coupling involving the magnetosphere and lower atmosphere. We discuss phenomena associated with the annual tide, polar circulation, magnetic storms and substorms.  相似文献   

7.
8.
9.
Information on atmospheric parameters, properties and processes above 70 km are mainly based upon meteor data. An important problem of such data systematization is to single out the meteor streams associated with a series of extreme phenomena. The forecasting of these phenomena requires a physical model of meteor streams at the early stage of their occurrence. A direct coupling with comets is assumed for most of the streams. This paper analyses the structure simulation of cometary nucleus desintegration. The D-criterion is used as the orbital community criterion. Giacobini-Zinner comet in its ten appearances (1900-1979) is considered. Determination of stream location and its detailed structural characteristics is essential for long space missions.  相似文献   

10.
From a critical comparison and synthesis of data from the four Pioneer Venus Probes, the Pioneer Venus Orbiter, and the Venera 10, 12, and 13 landers, models of the lower and middle atmosphere of Venus are derived. The models are consistent with the data sets within the measurement uncertainties and established variability of the atmosphere. The models represent the observed variations of state properties with latitude, and preserve the observed static stability. The rationale and the approach used to derive the models are discussed, and the remaining uncertainties are estimated.  相似文献   

11.
There is important progress now in the identifications and measurements of primary (parent) molecules in the inner coma of Comet Halley. H2O, CO2 and CO are definitely in the list, CH and some complicate organic molecules are suspected. Gas production rate for water vapor is QH2O 1030 s−1. The bulk of data doesn't contradict to the Whipple model of nucleus (with clathrate modification). Pronounced spatial structure of gaseous flow in the coma was observed, but in general measured properties of neutral gas in the coma of Comet Halley are not very different from predicted. Situation for dust is different. In situ dust measurements show that size spectrum and optical properties of particles in coma are substantively declining from predicted on the base of groundbased photometry. However there are discrepancies between Vega and Giotto dust counter data. Dust in the inner coma didn't prevent the succesful imaging of nucleus by TV on Vega 1 and 2.  相似文献   

12.
Firm results concerning the thermal structure, the composition, the seasonal effects of the atmosphere of Titan, as well as the superotation of its stratosphere are reviewed. The nature of the surface of the satellite, the possible presence of argon in the atmosphere and the structure and composition of clouds and aerosols are, among other topics, still speculative. The implications of the observed deuterium enrichment on the origin of ices in the outer part of the nebula are controversial.  相似文献   

13.
14.
The low solar atmosphere is composed of mostly neutral particles, but the importance of the magnetic field for understanding observed dynamics means that interactions between charged and neutral particles play a very important role in controlling the macroscopic fluid motions. As the exchange of momentum between fluids, essential for the neutral fluid to effectively feel the Lorentz force, is through collisional interactions, the relative timescale of these interactions to the dynamic timescale determines whether a single-fluid model or, when the dynamic frequency is higher, the more detailed two-fluid model is the more appropriate. However, as many MHD phenomena fundamentally contain multi-time-scale processes, even large-scale, long-timescale motions can have an important physical contribution from two-fluid processes. In this review we will focus on two-fluid models, looking in detail at two areas where the multi-time-scale nature of the solar atmosphere means that two-fluid physics can easily develop: shock-waves and instabilities. We then connect these ideas to observations attempting to diagnose two-fluid behaviour in the solar atmosphere, suggesting some ways forward to bring observations and simulations closer together.  相似文献   

15.
16.
An accurate understanding of the physical interactions and transport of space radiation is important for safe and efficient space operations. Secondary particles produced by primary particle interactions with intervening materials are an important contribution to radiation risk. Pions are copiously produced in the nuclear interactions typical of space radiations and can therefore be an important contribution to radiation exposure. Charged pions decay almost exclusively to muons. As a consequence, muons must also be considered in space radiation exposure studies. In this work, the NASA space radiation transport code HZETRN has been extended to include the transport of charged pions and muons. The relevant transport equation, solution method, and implemented cross sections are reviewed. Muon production in the Earth’s upper atmosphere is then investigated, and comparisons with recent balloon flight measurements of differential muon flux are presented. Muon production from the updated version of HZETRN is found to match the experimental data well.  相似文献   

17.
Optical properties of the Martian atmosphere and its radiative heat exchange have been investigated. The role of the greenhouse effect mechanism in evolution of the Martian climate has been studied.  相似文献   

18.
Models of the Venus neutral upper atmosphere, based on both in-situ and remote sensing measurements, are provided for the height interval from 100 to 3,500 km. The general approach in model formulation was to divide the atmosphere into three regions: 100 to 150 km, 150 to 250 km, and 250 to 3,500 km. Boundary conditions at 150 km are consistent with both drag and mass spectrometer measurements. A paramount consideration was to keep the models simple enough to be used conveniently. Available observations are reviewed. Tables are provided for density, temperature, composition (CO2, O, CO, He, N, N2, and H), derived quantities, and day-to-day variability as a function of solar zenith angle on the day- and nightsides.Estimates are made of other species, including O2 and D. Other tables provide corrections for solar activity effects on temperature, composition, and density. For the exosphere, information is provided on the vertical distribution of normal thermal components (H, O, C, and He) as well as the hot components (H, N, C, O) on the day- and nightsides.  相似文献   

19.
The ionosphere of Venus is primarily formed by photoionization of a gaseous blanket around Venus. The impact ionization by energetic solar charged particles also plays an important role in the variability of Venusian ionospheric ion, electron density and their temperature profiles. The microscopic variations in the solar wind velocity, particle flux and orientations of frozen-in interplanetary magnetic field determine the solar wind interaction with the Venusian ionosphere. The ion and electron density profiles obtained by Pioneer Venus Orbiter and Pioneer Venus Entry Probes have been analysed in the light of simultaneous solar wind velocity and particle flux. Marked changes in height profiles of ion, electron densities and their temperatures have been found to correlate with the simultaneous changes in the solar wind velocity and particle flux. It is shown that the solar wind plays a more important role in controlling the physical properties and behavior of daytime as well as nighttime ionosphere of Venus, whereas the solar xuv sustains the primary ionization process.  相似文献   

20.
A detailed study has been made of the optical properties of the gas and aerosol phases of the atmosphere of Venus. The radiative heat exchange has been calculated for the most probable models of atmospheric structural and optical characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号