首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This research examined the variability of foE in the equatorial ionosphere with solar activity within the equatorial ionospheric anomaly region. Ionosonde data recorded at Ouagadougou (lat. 12.4°N, long. 1.5°W and magnetic dip 1.43°N) were engaged to study the transient variations of the critical frequency of the E-layer (foE) and its dependence on solar activity. The study revealed that foE increases with the increase in solar intensity of the sun. The variability of the foE decreases with increases in the solar activity. The maximum value of the foE is at local noon when the ionosphere is stable; the variability at this local time is minimal. The minimum value of the foE is at sunrise and sunset, at this period on local time the equatorial ionosphere recorded its maxima variability. Irrespective of the degree of solar activity, foE is observed to be maximum in June solstice, followed by the equinoxes and minimum in December solstice. Equinoctial asymmetry occurred in the variation of the relative standard deviation of foE with maximum in September/March equinox for low/high solar activity.  相似文献   

2.
A possible quantitative explanation of the semi-annual variation in thermospheric density has been obtained in terms of a semi-annual variation in the computed globally averaged vertical energy carried by propagating tides from the lower and middle atmosphere into the thermosphere. The effect is primarily due to seasonal changes in the distribution of water vapor and in the solar declination angle and Sun-Earth distance. An MSIS-83 empirical model of the thermosphere, representing a revision of the earlier MSIS models, has been prepared. The database used covers a wider range of solar activity than previous models and an improved magnetic storm representation is included. Atomic oxygen profiles in the 100 to 160 km altitude region of the auroral thermosphere have been recalculated from measured quenching of N2(A3u+) using the latest laboratory rates and the results are in good agreement with the mean CIRA 1972 profile. A new empirical model of thermospheric variations with geomagnetic activity has been developed incorporating variations with local magnetic time, latitude dependent terms which can vary with the magnitude of the geomagnetic disturbance, and an altitude dependent expression for the equatorial wave. A new index ML, derived from the AL index, has been developed that appears to have promise to represent the variations of thermospheric species with geomagnetic activity. Satellite measured values of solar UV flux, ground-based observations of CaK plages, sunspot numbers and 10.7 cm solar radio flux have been analyzed for temporal variations. Some differences have been identified and the significance to empirical and theoretical upper atmosphere models is discussed.  相似文献   

3.
Utilizing ACE satellite observations from 1998 to 2009, we performed the elaborate study on the properties of the clock angle θCA (arctan(By/Bz) (?90° to 90°) of the interplanetary magnetic field (IMF) in the solar wind at 1?AU. The solar wind with northward IMF (NW-IMF) and southward IMF (SW-IMF) are analyzed, independently. Statistical analysis shows that the solar wind with SW-IMF and NW-IMF has similar properties in general, including their durations, the IMF Bz and By components, and the IMF θCA. Then, the solar wind with NW-IMF (SW-IMF) is classified into five different temporal scales according to the duration of the NW-IMF (SW-IMF), i.e., very-short wind of 10–30?min, short-scale wind of 0.5–1?h, moderate-scale wind of 1–3?h, long-scale wind of 3–5?h, and super-long wind >5?h. Our analysis reveals that the IMF θCA has a distinct decrease with increase of the temporal scale of the solar wind. Next, the solar wind is classified into two groups, i.e., the high-speed solar wind (>450?km/s) and the low-speed solar wind (<450?km/s). Our analysis indicates that the IMF θCA depends highly on the solar wind speed. Statistically, high-speed solar wind tends to have larger IMF θCA than low-speed solar wind. The evolutions of the solar wind and IMF with the solar activity are further studied, revealing no clear solar variation of the IMF θCA. Finally, we analyze the monthly variation of the IMF θCA. Superposed epoch result strongly suggests the seasonal variation of the IMF θCA.  相似文献   

4.
The concentrations of neutral hydrogen within the atmosphere of Venus are investigated for the period 1979–1980. During this period, the planet made nearly three orbits about the Sun, so that nearly three complete diurnal cycles were observed from the Pioneer Venus Orbiter (PVO). Values of n(H) are derived from in-situ ion and neutral composition measurements from the Orbiter Ion Mass Spectrometer (OIMS) and the Orbiter Neutral Mass Spectrometer (ONMS) using a charge exchange relationship involving O+, H+, O and CO2. The dawn bulge in the diurnal distribution of n(H), reported from the first diurnal cycle by Brinton et al., is found to persist with n(H) peaking at levels near 2 - 5 × 107/cm3 at altitudes below 165 km. At peak levels, the bulge exhibits a concentration ratio up to 400/1 relative to dayside values. Large day to day variations of up to a factor of five in n(H) are frequently encountered, and are attributed to perturbations induced by the solar wind interaction. These short term variations, plus a suggestion of some local time variation in the bulk location, make precise assessment of interannual variations in the n(H) difficult. Between the first diurnal cycle in early 1979 and the third in mid 1980, the decline in solar euv flux was of the order of 10% or less. Allowing for uncertainties due to short term variations, no clear evidence is found for an interannual variation in the hydrogen concentrations.  相似文献   

5.
Hα filtergrams and magnetograms indicate that bright features (such as plages and granulation boundaries) correspond to areas of strong vertical magnetic fields and dark features (such as fibrils and filaments) are associated with strong horizontal magnetic field. It was suggested by /1/ that there is an excess dissipation of waves, available for heating, in regions of vertical magnetic fields. With this suggestion in mind, we have investigated the physical heating mechanism due to ponderomotive forces exerted by turbulent waves along curved magnetic flux loops. Results show that the temperature difference (ΔT) between the inside and outside of the flux loop can be classified into three parts; ΔT = ΔT1 + ΔT2 + ΔT3; in which ΔT1 and ΔT3 represent the heating or cooling effect from the ponderomotive force, and ΔT2 is the heating effect due to conversion of turbulent energy from the localized plasma. The specific physical mechanism (i.e., the ponderomotive forces exerted by turbulent waves), is used to illustrate solar atmospheric heating via an example leading to the formulation of plages.  相似文献   

6.
The yearly variation of the integrated emission rate of the O(1S) nightglow in the lower thermosphere is studied and the solar cycle impact is examined from the observations of the Wind Imaging Interferometer (WINDII) operated on the Upper Atmosphere Research Satellite (UARS). More than 300,000 volume emission rate profiles of the O(1S) nightglow observed by WINDII for 40°S–40°N latitudes during November 1991–August 1997 over half of a solar cycle are utilized. These profiles are vertically integrated for the altitude range of 80–100 km and the equivalent column integrated emission rates are then zonally averaged for bins with 10° latitude and 3 month intervals. It is found that for each latitude the O(1S) nightglow emission rate appears to increase with increasing solar F10.7 cm flux, following a linear relationship. This characterizes the solar cycle impact on the O(1S) nightglow, while the solar influence is modulated by a seasonal variation. Based on these variations, an empirical formula is derived for predicting the three-month averages of the O(1S) nightglow integrated emission rate. The standard error of the estimated values from the formula is smaller than 30 Rayleigh.  相似文献   

7.
To improve the accuracy of the real time topside electron density profiles given by the Digisonde software a new model-assisted technique is used. This technique uses the Topside Sounder Model (TSM), which provides the plasma scale height (Hs), O+–H+ transition height (HT), and their ratio Rt = Hs/HT, derived from topside sounder data of Alouette and ISIS satellites. The Topside Sounder Model Profiler (TSMP) incorporates TSM and uses the model quantities as anchor points in construction of topside density (Ne) profiles. For any particular location, TSMP calculates topside Ne profiles by specifying the values of foF2 and hmF2. In the present version, TSMP takes the F2 peak characteristics – foF2, hmF2, and the scale height at hmF2 – from the Digisonde measurements. The paper shows results for the Digisonde stations Athens and Juliusruh. It is found that the topside scale height used in Digisonde reconstruction is less than that extracted from topside sounder profiles. Rough comparison of their bulk distributions showed that they differ by an average factor of 1.25 for locations of Athens and Juliusruh. When the Digisonde scale heights are adjusted by this factor, the reconstructed topside profiles are close to those provided by TSM. Compared with CHAMP reconstruction profiles in two cases, TSMP/Digisonde profiles show lower density between 400 and 2000 km.  相似文献   

8.
An empirical model of electron temperature (Te) for low and middle latitudes is proposed in view of IRI. It is constructed on the basis of experimental data obtained at 100 to 200 km by probe and incoherent scatter methods. Below 150 km the model gives two Te values: one from incoherent scatter data and another from probe measurements. The model can be used for all seasons for quiet geomagnetic conditions (Kp not greater 3) and at almost all levels of solar activity (F10.7 between 70 and 200). It is presented in an analytical form that allows one to calculate Te profiles for different latitudes, longitudes and at any season (day). Depending on geomagnetic latitude and solar zenith angle, electron temperature distributions are presented for two heights along with Te profile variations during the day (at middle latitudes).  相似文献   

9.
A database of electron temperature (Te) measurements comprising of most of the available satellite measurements in the topside ionosphere is used for studying the solar activity variations of the electron temperature Te at different latitudes, altitudes, local times and seasons. The Te data are grouped into three levels of solar activity (low, medium, high) at four altitude ranges, for day and night, and for equinox and solstices. We find that in general Te changes with solar activity are small and comparable in magnitude with seasonal changes but much smaller than the changes with altitude, latitude, and from day to night. In all cases, except at low altitude during daytime, Te increases with increasing solar activity. But this increase is not linear as assumed in most empirical Te models but requires at least a parabolic approximation. At 550 km during daytime negative as well as positive correlation is found with solar activity. Our global data base allows to quantify the latitude range and seasonal conditions for which these correlations occur. A negative correlation with solar activity is found in the invdip latitude range from 20 to 55 degrees during equinox and from 20 degrees onward during winter. In the low latitude (20 to −20 degrees invdip) F-region there is almost no change with solar activity during solstice and a positive correlation during equinox. A positive correlation is also observed during summer from 30 degrees onward.  相似文献   

10.
Employing Atmsophere Explorer-C measurements made in 1974, just prior to solar minimum, Brace and Theis /1/ demonstrated that a remarkably consistent inverse relationship existed between the electron density Ne and temperature Te in the F-region. In this paper we use later data from AE-C, taken when solar activity was rising (1975–1978), and Dynamics Explorer-2 data taken at solar maximum (1981), to examine how the temperature and density relationship changes with solar activity. We find that the solar maximum Te is a factor of two larger than the solar minimum Te for the same values of Ne. Te does not necessarily increase with solar activity, however, because Ne increases enough to approximately cancel the effect of higher solar extreme ultraviolet heating. We find that the effect of solar activity can be accounted for by a simple function of the F10.7 cm index that multiplies the solar minimum equation of Brace and Theis /1/.  相似文献   

11.
The initial power outputs Po of pulsars are not yet well known, but these seem to follow approximately a distribution law N(> Po) ∝ Po−n where 0.5 ≤ n ≤ 1.0. It seems likely that Po ≥ 1038 ergs/sec. With these assumptions, we estimate that the DUMAND detector can record ≥ 103 high-energy (> 4 TeV) neutrino events in a four-month period per Galactic supernova; (in our Galaxy, these are estimated to occur at the rate of about 8 per century.) Neutrinos from supernova shells in the Virgo supercluster would be marginally detectable (one very bright supernova per decade at about 20 Mpc) if N(> Po) ∝ Po−0.5, but undetectable if N(> Po) ∝ Po−1. The diffuse flux summed over distant extragalactic supernovae is likely to be well below the detection threshold.  相似文献   

12.
Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed ( and ). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = −V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T ? T, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2–4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.  相似文献   

13.
We investigated the diurnal, seasonal and latitudinal variations of ion density Ni over the Indian low and equatorial topside ionosphere within 17.5°S to 17.5°N magnetic latitudes by combining the data from SROSS C2 and ROCSAT 1 for the 9 year period from 1995 to 2003 during solar cycle 23. The diurnal maximum density is found in the local noon or in the afternoon hours and the minimum occurs in the pre sunrise hours. The density is higher during the equinoxes as compared to that in the June and December solstice. The local time spread of the daytime maximum ion density increases with increase in solar activity. A north south asymmetry with higher ion density over northern hemisphere in the June solstice and over southern hemisphere in December solstice has been observed in moderate and high solar activity years. The crest to crest distance increases with increase in solar flux. Ion density bears a nonlinear relationship with F10.7 cm solar flux and EUV flux in general. The density increases linearly with solar flux up to ∼150 sfu (1 sfu = 10−22Wm−2Hz−1) and EUV flux up to ∼50 units (109 photons cm−2 s−1). But beyond this the density saturates. Inverse saturation and linear relationship have been observed in some season or latitude also. Inter-comparison of the three solar activity indices F10.7 cm flux, EUV flux and F10.7P (= (F10.7 + F10.7A)/2, where F10.7A is the 81 day running average value of F10.7) shows that the ion density correlates better with F10.7P and F10.7 cm fluxes. The annual average daytime total ion density from 1995 to 2003 follows a hysteresis loop as the solar cycle reverses. The ion density at 500 km over the Indian longitude sector as obtained by the international reference ionosphere is in general lower than the measured densities during moderate and high solar activity years. In low solar activity years the model densities are equal or higher than measured densities. The IRI EIA peaks are symmetric (±10°) in equinox while densities are higher at 10°N in June solstice and at 10°S in the December solstice. The model density follows F10.7 linearly up to about F10.7 > ∼150 sfu and then saturates.  相似文献   

14.
The hourly and daily measured clear-sky global solar radiation (G) and biologically important effective erythematic radiation (EER) incident on a horizontal surface at Cairo, Egypt (latitude 30° 05′ N & Longitude 31° 15′ E), during the period from January 1995 to December 2005 are used in this paper. The relationship between daily integrated totals of EER and the daily totals of broadband global solar radiation (250–2800 nm) is established. The temporal variability of the percentage ratio of the total daily erythema to total daily broadband solar global irradiation (EER/G) is determined. The monthly and the seasonal averages of the extraterrestrial UVB solar radiation, Mesurad and estímated UVB solar radiation and clearness index KtUVB of UVB radiation are discussed. The average monthly mean variation of slant ozone (Z) and UVB transmission (KtUVB) at the present work are found. The two variables show an opposite seasonal behavior, and the average monthly of slant ozone column and UVB transmission values shows the relationship between them in a clearer way than those of daily values. The estimated values of UVB solar radiation a good agreement with the measured values of the UVB solar radiation, the difference between the estimated and measured values of UVB solar radiation varies from 1.2% to 2.8%. The effect of the annual cycles of solar zenith angle (SZA) and total column ozone (TCO) on the ratios (EER/G) are presented and the correction factors are determined for removal of the ozone cycle. The seasonal variability of EER/G is also discussed. The effect of the annual cycles of solar zenith angle (SZA) and total column ozone (TCO) on the ratios (EER/G) is presented and the correction factors are determined for removal of the ozone cycle.  相似文献   

15.
Langmuir probe measurements made at solar maximum from the Dynamics Explorer-2 satellite in 1981 and 1982 are employed to examine the latitudinal variation of electron temperature, Te, at altitudes between 300 and 400 km and its response to 27 day variations of solar EUV. Comparison of these data with Te models based on the solar minimum measurements from Atmosphere Explorer-C suggest that the daytime Te does not change very much during the solar cycle, except at low latitudes where an especially large 27 day variation occurs. The 27 day component decreases from about 7°/F10.7 unit at the equator to 3°/F10.7 unit at 851V 3 middle and higher latitudes. From these DE-2 measurements, and those from AE-C, we conclude that the daytime Te near the F2 peak is more responsive to short-term (daily) variations in F10.7 than to any longer term changes that may occur between solar minimum and solar maximum. To investigate this sensitivity of the dayside ionosphere to solar activity we employ the inverse relationship of Te and Ne, that was found at solar minimum, to see if it can be used to order the Te behaviour at solar maximum. We introduce a simple quadratic correction for the F10.7 influence on Te based on the entire daytime AE-C and DE-2 data base between 300 and 400 km. Although this equation may be found useful, the systematic deviations of the DE-2 data suggest that the solar minimum model does not accurately describe the Te-Ne relationships at solar maximum, at least above 300 km where the DE-2 measurements were made. Future work with this data base should attempt to see if such a relationship exists.  相似文献   

16.
Accelerated energetic particles in solar flares produced nuclear γ-lines in interactions with ambient solar atmosphere. Analysis of intensity of ratios between various γ-lines allows us to make estimations of abundance of elements, parameters of surrounding media and other solar characteristics. In this article we discuss the flux ratio between two lines from excited states of 12C (f15.11/f4.44) and our results of preliminary calculation of intensity ratio between two neutron capture lines at 3He and 1H (f20.58/f2.223). In particular we consider the opportunity to obtain n(3He)/n(1H) ratio during solar flares and using high-energy gamma-emission studying, based on the satellite data. Possible interpretation of spectral features observed during the January 20, 2005 solar flare is discussed. Preliminary analysis of energy spectrum in the band of 2–21 MeV gives n(3He)/n(1H) ∼ 8 × 10−4 for January 20, 2005 solar flare.  相似文献   

17.
Measurements of the principal ion species of the F1- and F2- regions have been used to develop an empirical model of the ion composition for altitudes between 150 and 500 km. The species measured by the S3-1 satellite include N+, O+, N2+, NO+ and O2+. The data were obtained near the minimum of the solar cycle, thus limited information on the ionospheric variation with solar flux is available. However, the range of latitude, altitude, local time and geomagnetic activity does provide a useful basis for modeling the F-region. The ion composition measurements have been used to provide a model for relative ion composition which is compatible with the total ion density from the International Reference Ionosphere model.  相似文献   

18.
985 whistlers observed between 1970 and 1975 in Hungary have been processed for equatorial plasmaspheric electron density and tube electron content above 1000 km (NT). The hourly median value of NT exhibits a diurnal variation with an amplitude of 1×1013 electrons/cm2-tube. 75 per cent of the electron flux values obtained from the time variation of NT are lower than 6×108 el cm?2s?1, while in some cases the fluxes reach a value as high as 3×109 el cm?2s?1. Between 17 and 04 LT the dominant flux direction is toward the ionosphere. The data also indicate that the day to day filling of the plasmasphere after magnetic disturbances continues through several days without exhibiting saturation, with higher filling rates for lower values of average Kp.  相似文献   

19.
The hydrogen Lyman (Lyα, 121.267 nm and Lyβ, 102.572 nm) lines are important contributors to the solar extreme ultra violet (EUV) flux which illuminates the upper Earth’s atmosphere. From high resolution spectral observations performed with the solar ultraviolet measurement of emitted radiations (SUMER) spectrometer on the Solar and Heliospheric Observatory (SOHO), the detailed profiles of these two lines have been obtained. Some insights into the variation of the shape of the profiles, sampled throughout the present solar cycle 23, are given and discussed.  相似文献   

20.
The topside ionosphere scale height extracted from two empirical models are compared in the paper. The Topside Sounder Model (TSM) provides directly the scale height (HT), while the incoherent scatter radar ionospheric model (ISRIM) provides electron density profiles and its scale height (HR) is determined by the lowest gradient in the topside part of the profile. HT and HR are presented for 7 ISR locations along with their dependences on season, local time, solar flux F10.7, and geomagnetic index ap. Comparison reveals that HT values are systematically lower than respective HR values as the average offset for all 7 stations is 55 km. For the midlatitude stations Arecibo, Shigaraki, and Millstone Hill this difference is reduced to 43 km. The range of variations of HR is much larger than that of HT, as the HT range overlaps the lower part of the HR range. Dependences on ap, DoY and LT are much stronger in the ISRIM than in TSM. This results in much larger values of HR at higher ap. Diurnal amplitude of HR is much larger than that of HT, with large maximum of HR at night. The present comparison yields the conclusion that the ISR measurements provide steeper topside Ne profiles than that provided by the topside sounders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号