首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent in situ measurements with balloon borne quadrupole mass spectrometers, between 20 and 45 km altitude, are reviewed and discussed.The major stratospheric positive ions observed are proton hydrates [H+(H2O)n] and non proton hydrates of the form H+Xm(H2O)2. The data analysis allows a derivation of the vertical mixing ratio profile of X (most probably CH3CN), which is compared with recent model calculations. From negative ion composition data, showing the presence of NO3? and HSO4? cluster ions, the density of sulfuric acid in the stratosphere is deduced. The implications of these findings on our understanding of the sulfur chemistry is briefly treated.Finally some other aspects such as contamination, cluster break up and the use of stratospheric ion mass spectra for determination of thermochemical data and other minor constituents are discussed.  相似文献   

2.
The measurements of positive ion composition in the high latitude D-region have revealed an excess of 34+ under distrubed conditions which has been interpreted as H2O2+. At the same altitude range near the transition height oxonium ions were measured as well. This paper presents a new model for the production and loss of oxonium ions with their production from H2O2+ + H2O → H3O+ + HO2 and their loss by attachment of N2 and/or CO2. A reaction constant of 8.5×10?28 (300/T)4 cm6s?1 has been obtained for the three body attachment H3O+ + CO2 + M → H3O+.CO2 + M from the measured density profile of 63+ in flight 18.1020. Mesospheric H2O and H2O2 densities are inferred from measurements of four high latitude ion compositions based on the oxonium model. The mixing ratios of hydrogen peroxide are up to two orders of magnitude higher compared to previous model calculations. In order to explain the missing production of odd hydrogen, we consider larger O(1D) densities, surface reactions of O(3P) on particles, and cathalytic photodissociation of water vapor on aerosol particles.  相似文献   

3.
We report on the typical structure of the large scale ion precipitation in the morning sector of the auroral zone and associated low frequency electromagnetic waves. Data obtained during near radial passes of the AUREOL-3 satellite point to a distinction between two main precipitation regions: 1) In the poleward part of the auroral zone the latitudinal variation of the average energy (or temperature) of the precipitated ions (mainly H+) indicate that they are adiabatically accelerated in the outer magnetosphere. This “high energy” (? 3 to > 20 keV) precipitation is usually associated with a low energy (E < 110 eV) upward flowing 0+ and H+ component, and 2) near the boundary between discrete and diffuse electron aurorae a drastic change in the ion characteristics is observed. The flux of energetic precipitated H+ ions is sharply reduced, which suggests the formation of an Alfvén layer. However, intense fluxes of precipitated H+, O+, and He+ ions with energies < 3 keV are observed equatorward of the Alfvén layer, in coincidence with the diffuse aurora and in association with quasi-monochromatic electromagnetic waves with frequencies around the proton gyrofrequency. As the characteristic convection and bounce times of the low energy upward flowing ion component are comparable (τ > 3 hours) we suggest that the precipitation of ionospheric ions inside the diffuse aurora results from convection and corotation of the ions accelerated to suprathermal energies at higher latitudes.  相似文献   

4.
This paper presents the results of the numerical calculations thermosphere/ionosphere parameters which were executed with using of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP)and comparison of these results with empirically-based model IRI-2001. Model GSM TIP was developed in West Department of IZMIRAN and solves self-consistently the time-dependent, 3-D coupled equations of the momentum, energy and continuity for neutral particles (O2, N2, O), ions (O+, H+), molecular ions (M+) and electrons and largescale eletric field of the dynamo and magnetospheric origin in the range of height from 80 km to 15 Earth’s radii. The empirically derived IRI model describes the E and F regions of the ionosphere in terms of location, time, solar activity and season. Its output provides a global specification not only of Ne but also on the ion and electron temperatures and the ion composition. These two models represent a unique set of capabilities that reflect major differences in along with a substantial approaches of the first-principles model and global database model for the mapping ionosphere parameters. We focus on global distribution of the Ne, Ti, Te and TEC for the one moment UT and fixed altitudes: 110 km, hmF2, 300 km and 1000 km. The calculations were executed with using of GSM TIP and IRI models for August 1999, moderate solar activity and quiet geomagnetic conditions. Results present as the global differences between the IRI and GSM TIP models predictions. The discrepancies between model results are discussed.  相似文献   

5.
We present a detailed study of the distribution and of the internal structure of the inverted-V electron precipitation commonly detected in the 500 – 2000 km altitude range aboard the AUREOL-3 satellite. These structured precipitations are statistically observed inside the auroral oval with a maximum occurence in the nightside sector. They correspond to primary electron fluxes peaked at energies generally below 10 keV. It is shown that, as predicted by kinetic theories, most inverted-V structures present a clear relationship between the field-aligned current density carried by the 1 – 20 keV primary electrons and the potential drop inferred from particle distribution functions. Furthermore the study demonstrates the existence of strong electron heating, related to the energy gain, when the current density exceeds some threshold of about 1 – 5 μA(m)?2.  相似文献   

6.
Simultaneous measurements taken by instruments on the Atmosphere Explorer - C satellite were used to compare electron and proton particle energy deposition, Joule heating, and neutral density perturbations in the region of the cusp.Altitude profiles of Joule heating, electron energy deposition, and electron density are derived using measurements taken by the satellite as input to a computer model. Electric fields are calculated using ion drift measurements. Figures are presented for a representative orbital pass.A peak Joule heating rate of 0.059 Wm?2 occurred in the cusp region with a peak of 0.025 Wm?2 in the evening auroral electrojet. Peak volume heating rates corresponding to these regions were 1.4 × 10?6Wm?3 and 7.10?7 Wm?3, both occurring at an altitude of 115 km. Particle energy deposition was about an order of magnitude less than Joule heating. Large neutral density perturbations are related to regions of heating.  相似文献   

7.
This paper discusses photometric measurements made of the ionospheric excitation of the line λ = 5577A? at the time of electron beam injection from a rocket into the Earth's ionosphere. The gradual increase of the glow intensity per impulse occurs due to accumulation of the energy of excited states of N2(A3Σ+u) and O(′S) during their lifetimes. The large disturbed zone in the near-rocket environment (size >500 m) is connected via the interaction of ions accelerated in the rocket potential field with ionospheric components. The glow intensity modulation is observed at a height of ~98 km during the electron beam injection simultaneously with the ignition of the beam-plasma discharge (BPD). The intensity minima are explained by a decrease of the energy of accelerated ions due to effective neutralization of the rocket body by the BPD plasma. The height profile of the glow intensity revealed two maxima at heights of ~103 km and ~115 km. The second maximum (at ~115 km) indicates that, at these heights, both collision and collision-free mechanisms of accelerated ion energy transport to ionospheric components exist.  相似文献   

8.
9.
Measurements of the principal ion species of the F1- and F2- regions have been used to develop an empirical model of the ion composition for altitudes between 150 and 500 km. The species measured by the S3-1 satellite include N+, O+, N2+, NO+ and O2+. The data were obtained near the minimum of the solar cycle, thus limited information on the ionospheric variation with solar flux is available. However, the range of latitude, altitude, local time and geomagnetic activity does provide a useful basis for modeling the F-region. The ion composition measurements have been used to provide a model for relative ion composition which is compatible with the total ion density from the International Reference Ionosphere model.  相似文献   

10.
11.
The geometries, dipole moments, and rotational constants for the linear and/or bent cations, Cn+1H+ and CnN+(n = 1–6), were studied by the B3LYP method with the modest basis sets. For CnH+(n = odd; 3, 5, 7) and CnN+(n = even; 2, 4, 6), the theoretical rotational constants (Bes) of closed-shell singlet C3H+, C5H+, C7H+, CCN+, C4N+, and C6N+ were calculated to be about 11,244, 2420, 885.2, 11,970, 2439, and 880.8 MHz, respectively. By contrast, the triplets are stable than the corresponding singlets for CnH+(n = odd; 2, 4, 6) and CnN+(n = even; 3, 5) except CN+.  相似文献   

12.
To improve the accuracy of the real time topside electron density profiles given by the Digisonde software a new model-assisted technique is used. This technique uses the Topside Sounder Model (TSM), which provides the plasma scale height (Hs), O+–H+ transition height (HT), and their ratio Rt = Hs/HT, derived from topside sounder data of Alouette and ISIS satellites. The Topside Sounder Model Profiler (TSMP) incorporates TSM and uses the model quantities as anchor points in construction of topside density (Ne) profiles. For any particular location, TSMP calculates topside Ne profiles by specifying the values of foF2 and hmF2. In the present version, TSMP takes the F2 peak characteristics – foF2, hmF2, and the scale height at hmF2 – from the Digisonde measurements. The paper shows results for the Digisonde stations Athens and Juliusruh. It is found that the topside scale height used in Digisonde reconstruction is less than that extracted from topside sounder profiles. Rough comparison of their bulk distributions showed that they differ by an average factor of 1.25 for locations of Athens and Juliusruh. When the Digisonde scale heights are adjusted by this factor, the reconstructed topside profiles are close to those provided by TSM. Compared with CHAMP reconstruction profiles in two cases, TSMP/Digisonde profiles show lower density between 400 and 2000 km.  相似文献   

13.
This review presents numerous recent examples of interesting variations in the composition and intensity of the hot ion flux (10 eV - 15 keV/e) provided by the AUREOL-3 satellite as a function of latitude and local time during periods of magnetic activity. In particular, these results reveal that although H+ is the most abundant ion during magnetically quiet periods, the ion composition of hot plasma at ionospheric altitudes is quite variable, and depends strongly on magnetic activity; results obtained during main and recovery phases of several magnetic storms demonstrate clearly (below 15 keV/Q) the great importance of the low altitude ionospheric source (H+, O+, and to a lesser degree He+) particularly at low latitudes (L ~ 3 - 4) where the flux of O+ ions becomes very large and even dominates. The results of the AUREOL-3 ion spectrometers establish the fact that upflowing suprathermal ionospheric ions (Ei < 100 eV/e) appear over large regions of the auroral ionosphere, the polar caps, and the polar cusp, as well as in or at the boundary of the plasmasphere during magnetospheric substorms or magnetic storms, and may consequently contribute significantly to the plasma sheet and to the inner storm time ring current. Most of the properties of the storm time ring current found by the GEOS, SCATHA, and ISEE satellites apply to lower altitudes, although the role of the ionospheric and/or plasmaspheric source appears accentuated.  相似文献   

14.
An ion model of the lower ionosphere is proposed. It consists of four positive ions: O2+, NO+ and two cluster ions - a simpler CI1 and a more complex CI2. This model well explains the normal component of the winter anomaly (WA) in the D-region, which is recorded by absorption measurements on short radiowaves and rocket experiments at middle (40°N) and high (70°) latitudes. The higher values of the electron density during the winter appear as a result of the lower recombination because of smaller rates of cluster ion formation, i.e. the normal WA can be explained and modelled by the regular seasonal variations of composition, temperature and density.  相似文献   

15.
16.
Atomic oxygen and molecular nitrogen play several roles in controlling electron temperature in the F-region. Both O and N2 are ionised by EUV radiation and produce photoelectrons. Ion-exchange with N2 controls the recombination of O+ and hence the equilibrium electron density. In the transfer of photoelectron energy to thermal electrons competition arises from ionisation and excitation of oxygen and nitrogen. Finally, the three most important processes by which thermal electrons lose energy are Coulomb collision with 0+, excitation of the fine-structure states of 0 and vibrational cooling by N2. A simple model expresses all these processes and accurately describes the observed relationship between electron temperature, electron density and solar flux.  相似文献   

17.
Outgassing from materials as well as deliberate gaseous and liquid releases create contaminant clouds around spacecraft that can degrade both instrumentation and measurements. This paper describes a new method for estimating outgassing water vapor concentrations around space vehicles. Water vapor ions measured in the course of a rocket experiment performed at Eglin AFB, Florida, on December 12, 1980 at 2311 UT are utilized to demonstrate the technique. The H2O concentration near the payload's surface is calculated using the rate coefficient for the fast charge transfer process, O+ + H2O + H2O+ + O, the source of the observed water vapor ions. It is found that the measured H2O+ ions were produced within 3–4 cm of the sampling plate's surface and that the average H2O pressure over this distance was relatively constant on ascent at 8 × 10?6 torr, within a factor two, implying a steady outgassing rate.  相似文献   

18.
Model calculations of the dayside ionosphere of Venus are presented. The coupled continuity and momentum equations were solved for O2+, O+, CO2+, C+, N+, He+, and H+ density distributions, which are compared with measurements from the Pioneer Venus ion mass spectrometer. The agreement between the model results and the measurements is good for some species, such as O+, and rather poor for others, such as N+, indicating that our understanding of the dayside ion composition of Venus is incomplete. The coupled heat conduction equations for ions and electrons were solved and the calculated temperatures compared with Pioneer Venus measurements. It is shown that fluctuations in the magnetic field have a significant effect on the energy balance of the ionosphere.  相似文献   

19.
As an important loss mechanism of radiation belt electrons, electromagnetic ion cyclotron (EMIC) waves show up as three distinct frequency bands below the hydrogen (H+), helium (He+), and oxygen (O+) ion gyrofrequencies. Compared to O+-band EMIC waves, H+- and He+-band emissions generally occur more frequently and result in more efficient scattering removal of <~5?MeV relativistic electrons. Therefore, knowledge about the occurrence of these two bands is important for understanding the evolution of the relativistic electron population. To evaluate the occurrence pattern and wave properties of H+- and He+-band EMIC waves when they occur concurrently, we investigate 64 events of multi-band EMIC emissions identified from high quality Van Allen Probes wave data. Our quantitative results demonstrate a strong occurrence dependence of the multi-band EMIC emissions on magnetic local time (MLT) and L-shell to mainly concentrate on the dayside region of L?=?~4–6. We also find that the average magnetic field amplitude of H+-band waves is larger than that of He+-band waves only when L?<?4.5 and AE1?<?300?nT, and He+-band emissions are more intense under all other conditions. In contrast to 5 events that have average H+-band amplitude over 2 nT, 19 events exhibit >2 nT He+-band amplitude, indicating that the He+-band waves can be more easily amplified than the H+-band waves under the same circumstances. For simultaneous occurrences of the two EMIC wave bands, their frequencies vary with L-shell and geomagnetic activity: the peak wave frequency of H+-band emissions varies between 0.25 and 0.8 fcp with the average between 0.25 and 0.6 fcp, while that of He+-band emissions varies between 0.03 and 0.23 fcp with the average between 0.05 and 0.15 fcp. These newly observed occurrence features of simultaneous H+- and He+-band EMIC emissions provide improved information to quantify the overall contribution of multi-band EMIC waves to the loss processes of radiation belt electrons.  相似文献   

20.
In situ measurements of the thermal ion composition of the ionosphere of Venus have been obtained for a period of two Venus years from the Bennett rf ion mass spectrometer on the Pioneer Venus Orbiter. Ion measurements within an altitude interval of 160 to 300 kilometers, corresponding to an overall latitude interval of about ?4° to 34°N, are assembled from the interval December 1978 to March 1980. This time interval corresponds to two revolutions of Venus about the Sun, designated as two “diurnal cycles”. The distributions of several ion species in this data base have been sorted to identify temporal and spatial variations, and to determine the feasibility of an analytical representation of the experimental results. The first results from the sorting of several prominent ions including O+, O2+, and H+ and several minor ions including CO2+, C+, and H2+ reveal significant diurnal variations, with superimposed modulation associated with solar activity and solar wind variations. The diurnal variation consists of strong day to night contrast in the ion concentrations, with differences of one to two orders of magnitude, depending upon ion mass and altitude. The concentrations of O2+, O+, CO2+ and C+ peak throughout the dayside decreasing sharply at the terminators to nightside levels, lower by one to two orders of magnitude relative to the dayside. The diurnal variations of the light ions H+ and H2+ peak during the night, exhibiting asymmetric nightside bulges favoring the pre-dawn sector, near 0400 solar hour angle. Superimposed upon the diurnal distributions are modulation signatures which correlate well with modulation in the F10.7 index, indicating a strong influence of solar variability on the ion production and distribution. The influence of solar wind perturbations upon the ion distributions are also indicated, by a significant increase in the scatter of the observations with increasing altitude as higher altitudes, approaching 300 kilometers, are sampled. Together, these temporal and spatial variations make the task of modelling the ionosphere of Venus both very interesting and challenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号