共查询到20条相似文献,搜索用时 0 毫秒
1.
L P Filatova E N Vaulina C Grozdova TYaPrudhommeau J Proust 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(8):143-146
Two experiments with Drosophila melanogaster males were performed aboard the Salyut 6 orbital station. Mutagenic effects of a 8 day space flight on sex chromosome nondisjunction and intergene recombination in chromosome II were studied. The space flight factors (SFF) increased the frequency of chromosome nondisjunction and recombination. The model experiments showed that the combined effects of vibration and acceleration do not cover the whole spectrum of space flight mutagenic factors. These data suggest that heavy space ions are mainly responsible for the observed effect. 相似文献
2.
D A Klimchuk E L Kordyum L A Danevich E B Tarnavskaya M G Tairbekov T H Iversen C Baggerud O Rasmussen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):133-140
Preparatory experiments for the IML-1 mission using plant protoplasts, were flown on a 14-day flight on Biokosmos 9 in September 1989. Thirty-six hours before launch of the biosatellite, protoplasts were isolated from hypocotyl cells of rapeseed (Brassica napus) and suspension cultures of carrot (Daucus carota). Ultrastructural and fluorescence analysis of cell aggregates from these protoplasts, cultured under microgravity conditions, have been performed. In the flight samples as well as in the ground controls, a portion of the total number of protoplasts regenerated cell walls. The processes of cell differentiation and proliferation under micro-g did not differ significantly from those under normal gravity conditions. However, in micro-g differences were observed in the ultrastructure of some organelles such as plastids and mitochondria. There was also an increase in the frequency of the occurrence of folds formed by the plasmalemma together with an increase in the degree of complexity of these folds. In cell cultures developed under micro-g conditions, the calcium content tends to decrease, compared to the ground control. Different aspects of using isolated protoplasts for clarifying the mechanisms of biological effects of microgravity are discussed. 相似文献
3.
E N Grigoryan H J Anton V I Mitashov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(2):293-301
Data on forelimb and eye lens regeneration in urodeles under spaceflight conditions (SFC) have been obtained in our previous studies. Today, evidence is available that SFC stimulate regeneration in experimental animals rather than inhibit it. The results of control on-ground experiments with simulated microgravity suggest that the stimulatory effect of SFC is due largely to weightlessness. An original experimental model is proposed, which is convenient for comprehensively analyzing neural regeneration under SFC. The initial results described here concern regeneration of neural retina in Pleurodeles waltl newts exposed to microgravity simulated in radial clinostat. After clinorotation for seven days (until postoperation day 16), a positive effect of altered gravity on structural restoration of detached neural retina was confirmed by a number of criteria. Specifically, an increased number of Mullerian glial cells, an increased relative volume of the plexiform layers, reduced cell death, advanced redifferentiation of retinal pigment epithelium, and extended areas of neural retina reattachment were detected in experimental newts. Moreover, cell proliferation in the inner nuclear layer of neural retina increased as compared with control. Thus, low gravity appears to intensify natural cytological and molecular mechanisms of neural retina regeneration in lower vertebrates. 相似文献
4.
G De Angelis M Caldora M Santaquilani R Scipione A Verdecchia 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):1017-1020
There are few human data on low-dose-rate-radiation exposure and the consequent acute and late effects. This fact makes it difficult to assess health risks due to radiation in the space environment, especially for long-term missions. Epidemiological data on civilian flight personnel cohorts can provide information on effects due to the low-dose and low-dose rate mixed high- and low-LET radiation environment in the earth's atmosphere. The physical characteristics of the radiation environment of the atmosphere make the results of the studies of commercial flight personnel relevant to the studies of activities in space. The cooperative international effort now in progress to investigate dose reconstructions will contribute to our understanding of radiation risks for space exploration. 相似文献
5.
F. Yatagai M. Honma A. Ukai K. Omori H. Suzuki T. Shimazu A. Takahashi T. Ohnishi N. Dohmae N. Ishioka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
In view of the concern for the health of astronauts that may one day journey to Mars or the Moon, we investigated the effect that space radiation and microgravity might have on DNA damage and repair. We sent frozen human lymphoblastoid TK6 cells to the International Space Station where they were maintained under frozen conditions during a 134-day mission (14 November 2008 to 28 March 2009) except for an incubation period of 8 days under 1G or μG conditions in a CO2 incubator. The incubation period started after 100 days during which the cells had been exposed to 54 mSv of space radiation. The incubated cells were then refrozen, returned to Earth, and compared to ground control samples for the determination of the influence of microgravity on cell survival and mutation induction. The results for both varied from experiment to experiment, yielding a large SD, but the μG sample results differed significantly from the 1G sample results for each of 2 experiments, with the mean ratio of μG to 1G being 0.55 for the concentration of viable cells and 0.59 for the fraction of thymidine kinase deficient (TK−) mutants. Among the mutants, non-loss of zygosity events (point mutations) were less frequent (31%) after μG incubation than after 1G incubation, which might be explained by the influence of μG on cellular metabolic or physiological function. Additional experiments are needed to clarify the effect of μG interferes on DNA repair. 相似文献
6.
G Horneck U Eschweiler G Reitz J Wehner R Willimek K Strauch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,16(8):105-118
Spores of different strains of Bacillus subtilis and the Escherichia coli plasmid pUC19 were exposed to selected conditions of space (space vacuum and/or defined wavebands and intensities of solar ultraviolet radiation) in the experiment ER 161 "Exobiological Unit" of the Exobiology Radiation Assembly (ERA) on board of the European Retrievable Carrier (EURECA). After the approximately 11 months lasting mission, their responses were studied in terms of survival, mutagenesis in the his (B. subtilis) or lac locus (pUC19), induction of DNA strand breaks, efficiency of DNA repair systems, and the role of external protective agents. The data were compared with those of a simultaneously running ground control experiment. The survival of spores treated with the vacuum of space, however shielded against solar radiation, is substantially increased, if they are exposed in multilayers and/or in the presence of glucose as protective, whereas all spores in "artificial meteorites", i.e. embedded in clays or simulated Martian soil, are killed. Vacuum treatment leads to an increase of mutation frequency in spores, but not in plasmid DNA. Extraterrestrial solar ultraviolet radiation is mutagenic, induces strand breaks in the DNA and reduces survival substantially; however, even at the highest fluences, i.e. 3 x 10(8) J m-2, a small but significant fraction of spores survives the insolation. Action spectroscopy confirms results of previous space experiments of a synergistic action of space vacuum and solar UV radiation with DNA being the critical target. 相似文献
7.
V Blum 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(7):1683-1691
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfully tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the proposed further C.E.B.A.S.-based development of longer-term duration aquatic food production modules. 相似文献
8.
H. Fischer J. Gille J. Russell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(4):279-281
The validation status of the LIMS (Limb Infrared Monitor of the Stratosphere) measurements in the water vapor channel is presented in a brief form. The agreement with other water vapor data taken in correlative balloon underflights is encouraging for this stage of the processing. Future efforts will be made to resolve remaining discrepancies so that operational reduction can begin. Preliminary maps for atmospheric layers between 50 mb and 1 mb show a fairly smooth water vapor field in the summer hemisphere. 相似文献
9.
J.C. Gille P.L. Bailey J.M. Russell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(4):267-270
The Limb Infrared Monitor of the Stratosphere (LIMS) is a 6 channel scanning radiometer which measures the infrared emission by the earth's limb. These measurements are inverted to yield distributions of temperature, ozone, water vapor, nitric acid and nitrogen dioxide. The instrumentation and its orbital performance are briefly described. Retrievals of temperature and nitrogen dioxide are presented, with a discussion of their precision. Comparisons to in-situ rocket and balloon measurements are used to assess their accuracy. Special mention is made of the temperature data supplied for the FGGE II-b data sets. Results for ozone, water vapor and nitric acid are presented in companion papers. 相似文献
10.
J F Bayonove J J Raffi J P Agnel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):53-57
Rice caryopsis of Cigalon variety with short grain of the LDEF mission can develop and grow as well as those of the laboratory control. Rice caryopsis of Delta variety with long grain did not develop while a small number of excised embryos can develop and grow as well as the control group. A preliminary study of the Electron Spin Resonance (ESR) spectra of Rice embryos and seeds recorded several month after the flight on flight samples and on control ones has been carried out. All these samples had the same storage time. During storage the radical concentration which usually decreases, now depends on irradiation doses and on whether or not they were delivered in presence of oxygen. The signal variations are smaller than those usually observed in the different parts of the starch. An estimation of a "gamma-equivalent-dose" can be reached. 相似文献
11.
A R Kranz K E Gartenbach M W Zimmermann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):383-388
The role of cosmic ionizing radiation, including heavy ions (HZE-particles) in the induction of mutations at the molecule-, chromosome-, genome- and cell-level is discussed on the basis of different DNA organization in a pro- and eukaryotically compartmented plant system (Arabidopsis thaliana (L.) Heynh.). Data recently obtained on the biological effects of ionizing radiation make it timely to discuss comparatively the evolutionary potentials of space radiation effects in the pro- and eukaryotic genomes (plasmon, plastidom, chondriom, and nucleom) during long duration exposure on space flights. 相似文献
12.
13.
P E Villeneuve K S Wenger B G Thompson T Kedar E H Dunlop 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):75-78
The gas exchange portion of a phase-separated loop bioreactor was tested with respect to oxygen mass transfer and micromixing in accelerations of 0.01g, 1g, and 2g. A plot of the overall mass transfer coefficient versus gravity indicates the rate of oxygen transfer does not change as a function of acceleration. Also, it was determined that the micromixing did not exhibit significant changes in the various gravitational fields. These observations indicate the loop bioreactor should function independent of acceleration. 相似文献
14.
H. Panel R. Tixador G. Richoilley R. Bassler E. Monrozies Yu. Nefedov G. Gretchko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(14):95-100
Results of the Cytos M experiment and complementary results of the Cytos I experiment flown aboard the Soviet orbital station Salyut 6 are shown. Space flight of Paramecia cultures resulted in a stimulating effect on cell proliferation, in a larger cell volume, in changes in cell dry weight, cell total protein and the electrolyte content of the culture media in which the organisms were grown. The assumption of a possible effect of weightlessness on membrane permeability is discussed. 相似文献
15.
A Izumi-Kurotani M Yamashita Y Kawasaki T Kurotani Y Mogami M Okuno A Oketa A Shiraishi K Ueda R J Wassersug T Naitoh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):419-422
Japanese tree frogs (Hyla japonica) were flown to the space station MIR and spent eight days in orbit during December, 1990. Under microgravity, their postures and behaviors were observed and recorded. On the MIR, floating frogs stretched four legs out, bent their bodies backward and expanded their abdomens. Frogs on a surface often bent their neck backward and walked backwards. This behavior was observed on parabolic flights and resembles the retching behavior of sick frogs on land--a possible indicator of motion sickness. Observations on MIR were carried out twice to investigate the frog's adaptation to space. The frequency of failure in landing after a jump decreased in the second observation period. After the frogs returned to earth, readaptation processes were observed. The frogs behaved normally as early as 2.5 hours after landing. 相似文献
16.
R T Ripetskyj N A Kit C I Chaban 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1135-1139
The superficial cells of dark-grown moss shoots give rise to negatively gravitropic protonemata, whatever the orientation of the shoot. Shoot orientation, however, does affect from which side of the shoot the protonemata form and the direction of their growth. Protonemata from horizontal shoots grow out at a near-right angle to their supporting axes and are initiated more or less evenly along the upper side of the stem. Protonemata arising from vertically-oriented shoots in either an upright or an inverted position grow straight at an acute angle to the stem axis. The difference in the growth direction of the protonemata seems to be conditioned by the different position of the growth zone of the protonemal outgrowths, and subsequently that of the apical protonemal cells, with respect to the gravity vector. Observations suggest that the shoot protonemata, in conditions of clinorotation, persist in their original growth direction. Results also indicate that, in darkness, gravity determines only the site of protonemata initiation, not the process of initiation itself. Light, by contrast, by acting through both phytochrome and high-energy reaction systems, triggers the initiation process and defines the location of protonemata. 相似文献
17.
J A Joseph B Shukitt-Hale J McEwen B M Rabin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(10):2057-2064
Our research over the last several years has suggested that young (3 mo) rats exposed to whole-body 56Fe irradiation show neuronal signal transduction alterations and accompanying motor behavioral changes that are similar to those seen in aged (22-24 mo) rats. Since it has been postulated that 1-2% of the composition of cosmic rays contain 56Fe particles of heavy particle irradiation, there may be significant CNS effects on astronauts on long-term space flights which could produce behavioral changes that could be expressed during the mission or at some time after the return. These, when combined with other effects such as weightlessness and exposure to proton irradiations may even supercede mutagenic effects. It is suggested that by determining mechanistic relationships that might exist between aging and irradiation it may be possible to determine the common factor(s) involved in both perturbations and develop procedures to offset their deleterious effects. For example, one method that has been effective is nutritional modification. 相似文献
18.
A Baüerle R H Anken R Hilbig N Baumhauer H Rahmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1598-1601
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behavior during PAFs (especially so-called spinning movements and looping responses) and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalization of gravity in teleosteans) of fish swimming kinetotically at microgravity in comparison with animals from the same batch who swam normally. On the histological level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100 micrometers2), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in malformed sensory epithelia. 相似文献
19.
Approaches in the determination of plant nutrient uptake and distribution in space flight conditions. 总被引:2,自引:0,他引:2
A G Heyenga A Forsman L S Stodieck A Hoehn M Kliss 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,26(2):299-302
The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable. 相似文献
20.
J Bayonove M Burg M Delpoux A Mir 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(10):97-101
Caryopses and isolated embryos from Rice (Oryza sativa L.) and Tobacco seeds (Nicotiana tabacum L. variety Xanthi) were studied in the Biobloc III container aboard the Soviet orbital space station SALYUT 7. The recovery from radiation damage under conditions of space flight was observed for rice caryopsis and embryos gamma irradiated (Co 60, 50 grays) prior to launch. There was a large decrease in the percentage of germinating seeds from the Tobacco strain tested when the seeds were exposed to heavy ions. Among the germinating plantlets there were few morphological anomalies. Furthermore, there was a significant greater amount of genetic change in those samples held in grids as compared to those in bags. 相似文献