首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fish otolith growth in 1g and 3g depends on the gravity vector.   总被引:1,自引:0,他引:1  
Size and asymmetry (size difference between the left and the right side) as well as calcium (Ca) content of inner ear otoliths of larval cichlid fish Oreochromis mossambicus were determined after a long-term stay at hypergravity conditions (3g; centrifuge). Both utricular and saccular otoliths (lapilli and sagittae, respectively) were significantly smaller after hyper-g exposure as compared to parallely raised 1g-control specimens and the absolute amount of otolith-Ca was diminished. The asymmetry of sagittae was significantly increased in the experimental animals, whereas the respective asymmetry concerning lapilli was markedly decreased. In the course of another experiment larvae were raised in aquarium hatch baskets, from which one was placed directly above aeration equipment which resulted in random water circulation shifting the fish around ("shifted" specimens). The lapillar asymmetry of the "stationary" specimens showed a highly significant increase during early development when larvae were forced to lay on their sides due to their prominent yolk-sacs. In later developmental stages, when they began to swim freely, a dramatic decrease in lapillar asymmetry was apparent. Taken together with own previous findings according to which otolith growth stops after vestibular nerve transaction, the results presented here suggest that the growth and the development of bilateral asymmetry of otoliths is guided by the environmental gravity vector, obviously involving a feedback loop between the brain and the inner ear.  相似文献   

2.
The present electron microscopical investigations were directed to the question, whether alterations in the gravitational force might induce structural changes in the morphology of otoliths or/and inner ear sensory epithelia of developing and adult swordtail fish (Xiphophorus helleri) that had been kept either under long-term moderate hypergravity (8 days; 3g) or under short-time extreme hypergravity (10 minutes up to 9g). The otoliths of adult and neonate swordtail fish were investigated by means of scanning electron microscopy (SEM). Macular epithelia of adult fish were examined both by SEM and transmission electron microscopy (TEM). The saccular otoliths (sagittae) of normally hatched adult fish revealed an enormous inter- (and even intra-; i.e. left vs. right) individual diversity in shape and size, whereas the otoliths of utricles (lapilli) and lagenae (asterisci) seemed to be more constant regarding morphological parameters. The structural diversity of juvenile otoliths was found to be less prominent as compared to the adults, differing from the latter regarding their peculiar crystalline morphology. Qualitative differences in the fine structure (SEM) of otoliths taken from adult and larval animals kept under 3g in comparison to 1g controls could not be observed. The SEM and TEM investigations of sensory epithelia also did not reveal any effects due to 3g stimulation. Even extreme hypergravity (more than 7g) for 10 minutes did not result in distinct pathological changes.  相似文献   

3.
Larval siblings of cichlid fish (Oreochromis mossambicus) were subjected to hypergravity (hg; 3 g, 14 days) during development. Following the transfer to 1 g (i.e., stopping the centrifuge) they were separated into normally and kinetotically swimming individuals (the latter performed spinning movements). During hg, the animals were maintained in aquarium water containing alizarin-complexone (AC), a fluorescent calcium tracer. Densitometric measurements of AC uptake into inner ear otoliths (optical density of AC/micrometers2) revealed that the kinetotic individuals had incorporated significantly more AC/calcium than the normally behaving fish. Since the amount of otolithic calcium can be taken as an approximation for otolith weight, the present results indicate that the otoliths of kinetotically swimming samples were heavier than those of the normally behaving larvae, thus exhibiting a higher absolute weight asymmetry of the otoliths between the right vs. the left side of the body. This supports an earlier concept according to which otolith (or statolith) asymmetry is the cause for kinetoses such as human static space sickness.  相似文献   

4.
Larval cichlid fish (Oreochromis mossambicus) siblings were subjected to 3 g hypergravity (hg) and total darkness for 21 days during development and subsequently processed for conventional histology. Further siblings reared at 1 g and alternating light/dark (12h:12h) conditions served as controls. Cell number counts of the visual Nucleus isthmi (Ni) versus the vestibular Nucleus magnocellularis (Nm) revealed that in experimental animals total cell number was decreased in the Ni, possibly due to retarded growth as a result of the lack of visual input whereas no effect was observed in the Nm. Calculating the percentual asymmetry in cell number (i.e., right vs. the left side of the brain), no effects of hg/darkness were seen in the Ni, whereas asymmetry was slightly increased in the Nm. Since the asymmetry of inner ear otoliths is decreased under hg, this finding may indicate efferent vestibular action of the CNS on the level of the Nm by means of a feedback mechanism.  相似文献   

5.
It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish. Otolith growth in terms of mineralization mainly depends on the enzyme carboanhydrase (CA), which is responsible for the provision of the pH-value necessary for calcium carbonate deposition. Larval siblings of cichlid fish (Oreochromis mossambicus) were subjected to hypergravity (3 g, hg; 6 h) during development and separated into normally and kinetotically swimming individuals following the transfer to 1 g (i.e., stopping the centrifuge; kinetotically behaving fish performed spinning movements). Subsequently, CA was histochemically demonstrated in inner ear ionocytes (cells involved in the endolymphatic ion exchange) and enzyme reactivity was determined densitometrically. It was found that both the total macular CA-reactivity as well as the difference in reactivities between the left and the right maculae (asymmetry) were significantly lower (1) in experimental animals as compared to the 1 g controls and (2) in normally swimming hg-animals as compared to the kinetotically behaving hg-fish. The results are in complete agreement with earlier studies, according to which hypergravity induces a decrease of otolith growth and the otolithic calcium incorporation (visualized using the calcium-tracer alizarin complexone) of kinetotically swimming hg-fish was higher as compared to normally behaving hyper-g animals. The present study thus strongly supports the concept that a regulatory mechanism, which adjusts otolith size and asymmetry as well as otolithic calcium carbonate incorporation towards the gravity vector, acts via activation/deactivation of macular CA.  相似文献   

6.
It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1 g to microgravity. In the course of parabolic aircraft flight experiments, it has been demonstrated that kinetosis susceptibility is correlated with asymmetric inner ear otoliths (i.e., differently weighed statoliths on the right and the left side of the head) or with genetically predispositioned malformed cells within the sensory epithelia of the inner ear. Hitherto, the threshold of gravity perception for inducing kinetotic behavior as well as the relative importance of asymmetric otoliths versus malformed epithelia for kinetosis susceptibility has yet not been determined. The following experiment using the ZARM drop-tower facility in Bremen, Germany, is proposed to be carried out in order to answer the aforementioned questions. Larval cichlid fish (Oreochromis mossambicus) will be kept in a camcorder-equipped centrifuge during the microgravity phases of the drops and thus receive various gravity environments ranging from 0.1 to 0.9 g. Videographed controls will be housed outside of the centrifuge receiving 0 g. Based on the video-recordings, animals will be grouped into kinetotically and normally swimming samples. Subsequently, otoliths will be dissected and their size and asymmetry will be measured. Further investigations will focus on the numerical quantification of inner ear supporting and sensory cells as well as on the quantification of inner ear carbonic anhydrase reactivity. A correlation between: (1) the results to be obtained concerning the g-loads inducing kinetosis and (2) the corresponding otolith asymmetry/morphology of sensory epithelia/carbonic anhydrase reactivity will further contribute to the understanding of the origin of kinetosis susceptibility. Besides an outline of the proposed principal experiments, the present study reports on a first series of drop-tower tests, which were undertaken to elucidate the feasibility of the proposal (especially concerning the question, if some 4.7 s of microgravity are sufficient to induce kinetotic behavior in larval fish).  相似文献   

7.
Previous investigations revealed that the growth of fish inner ear otoliths depends on the amplitude and the direction of gravity, thus suggesting the existence of a (negative) feedback mechanism. In the course of these experiments, it was shown that altered gravity both affected otolith size (and thus the provision of the proteinacious matrix) as well as the incorporation of calcium. It is hitherto unknown, as of whether sensory hair cells are involved either in the regulation of otolith growth or in the provision of otolithic material (such as protein or inorganic components) or even both. The ototoxic aminoglycoside gentamicin (GM) damages hair cells in many vertebrates (and is therefore used for the treatment of Meniere's disease in humans). The present study was thus designed to determine as of whether vestibular sensory cells are needed for otolith growth by applying GM in order to induce a (functionally relevant) loss of these cells. Developing cichlid fish Oreochromis mossambicus were therefore immersed in 120 mg/l GM for 10 or 21 days. At the beginning and at the end of the experimental periods, the fish were incubated in the calcium-tracer alizarin complexone (AC). After the experiment, otoliths were dissected and the area grown during GM-exposure (i.e., the area enclosed by the two AC labellings) was determined planimetrically. The results showed that incubating the animals in a GM-solution had no effect on otolith growth, but the development of otolith asymmetry was affected. Ultrastructural examinations of the sensory hair cells revealed that they had obviously not been affected by GM-treatment (no degenerative morphological features observed). Overall, the present results suggest that hair cells are not affected by GM concerning their possible role in (general) otolith growth, but that these cells indeed might have transitionally been impaired by GM resulting in a decreased capacity of regulating otolith symmetry.  相似文献   

8.
Stimulus dependence is a general feature of developing sensory systems. It has been shown earlier that the growth of inner ear heavy stones (otoliths) of late-stage Cichlid fish (Oreochromis mossambicus) and Zebrafish (Danio rerio) is slowed down by hypergravity, whereas microgravity during space flight yields an opposite effect, i.e. larger than 1 g otoliths, in Swordtail (Xiphophorus helleri) and in Cichlid fish late-stage embryos. These and related studies proposed that otolith growth is actively adjusted via a feedback mechanism to produce a test mass of the appropriate physical capacity. Using ground-based techniques to apply simulated weightlessness, long-term clinorotation (CR; exposure on a fast-rotating Clinostat with one axis of rotation) led to larger than 1 g otoliths in late-stage Cichlid fish. Larger than normal otoliths were also found in early-staged Zebrafish embryos after short-term Wall Vessel Rotation (WVR; also regarded as a method to simulate weightlessness). These results are basically in line with the results obtained on Swordtails from space flight.  相似文献   

9.
The mutant strain (ha) of medaka (Oryzias latipes) lack utricular otoliths as fry, and some never form otoliths for life. The cross (F1 generation) between the strain having good eyesight and another strain having ordinary eyesight augmented visual acuity of the F1 generation. Crossing the good eyesight strain and ha mutant produced fish having good eyesight and less sensitivity to gravity in the F2 population. Their tolerance to microgravity was tested by parabolic flight using an airplane. The fish exhibited less looping and no differences in degree of looping between light and dark conditions, suggesting that loss of eyesight (in darkness) is not a direct cause for looping behavior in microgravity. The ha embryos could not form utricular otoliths. They did form saccular otoliths, but with a delay. Fry of the mutant fish lacking the utricular otoliths are highly dependent on light upon hatching and exhibit a perfect dorsal-light response (DLR). As they grow, they eventually shift from being light-dependent to being gravity-dependent. Continuous treatment of the fry with altered light direction suppressed this shift to gravity dependence. Being less dependent on gravity, these fish can serve as models in studying the differences expected for the vestibular system of fish reared in microgravity. When these fish were exposed to microgravity (parabolic flights) of an airplane, they spent far less time looping than fish reared in an ordinary light regimen.  相似文献   

10.
Pre-mated adult female newts and fertilized eggs will be flown on the International Microgravity Laboratory-2 flight, in 1994. One objective of the flight will be to observe the influence of microgravity on the development of the gravity-sensing organs in the inner ear. These organs contain sensory hair cells covered by a layer of dense stones (otoconia). Gravity and linear acceleration exert forces on these masses, leading to excitation of the nerve fibers innervating the hair cells. If the production of the otoliths is regulated to reach an optimal weight, their development might be abnormal in microgravity. Ground-based control experiments are reported describing the developmental sequence in which both the otoliths and their associated sensory epithelium and the semicircular canals appear and develop. Three-dimensional reconstruction of serial sections through the otic vesicle of newt embryos at stages 31 through 58 demonstrate the first appearance, relative position and growth of the otoliths. Reports of experiments in which fertilized frog eggs were flown on a Russian Cosmos mission conclude that the utricular otolith is increased in volume, whereas the saccular otolith maintains normal size, suggesting that at least in the utricle, the weight of the otolith might be regulated.  相似文献   

11.
It has been suggested that the changes of otolith mass during the otolith development in altered gravity conditions as well as the growth of otoliths in fishes in normal conditions are determined by the feedback between the otolith dynamics and the processes that regulate otolith growth. This hypothesis originates from the pendulum model of an otolith (de Vries, 1950), in which otolith mass is a parameters. The validity of this hypothesis is tested by comparing the pendulum model with a simplified spatially distributed model of an otolith. It was shown that when the otolith plate (otoconial layer) was spatially distributed and fixed to the macular surface, the mechanical sensitivity of the otolith does not depend on the total otolith mass and its longitudinal dimensions. It is determined by otolith thickness, Young's modulus, and the viscosity of the gel layer of the growing otolith. These parameters may change in order to secure otolith sensitivity under altered dynamic conditions (e.g., in microgravity). Possible hypotheses regarding the relationship between the otolith growth, otolith dynamics and animal growth are proposed and discussed here.  相似文献   

12.
Since changing gravity (concerning direction and amplitude) strongly affects inner ear otolith growth and otolithic calcium incorporation in developing fish, it was the aim of the present study to locate the site of mineralization in order to gain cues and insights into the provenance of the otoliths inorganic compounds. Therefore, larval cichlid fish (Oreochromis mossambicus) were incubated in the calcium-tracer alizarin complexone (AC; red fluorescence). After maintenance in aquarium water for various periods (1, 2, 3, 6, 9 and 12 h; 1, 2, 3, 5, 6, 7, 15, 29, 36 and 87 d), the animals were incubated in the calcium-tracer calcein (CAL; green fluorescence). AC thus labeled calcium being incorporated at the beginning of the experiment and would subsequently accompany calcium in the course of a possible dislocation, whereas CAL visualized calcium being deposited right at the end of the test. Subsequently, the otoliths were analyzed using a laser scanning microscope and it was shown that the initial site of calcium incorporation was located directly adjacent to the sensory epithelium and the otolithic membrane. Later, calcium deposits were also found on further regions of the otoliths' surface area, where they had been shifted to in the course of dislocation. This finding strongly indicates that the sensory epithelium plays a prominent role in otolithic biomineralization, which is in full agreement with an own electron microscopical study [ELGRA News 23 (2003) 63].  相似文献   

13.
Young fish (Oreochromis mossambicus) were exposed to microgravity (micro g) for 9 to 10 days, or to hypergravity (hg) for 9 days. For several weeks after termination of micro g and hg, the roll-induced static vestibuloocular reflex (rVOR) was recorded. In stage 11/12-fish, the rVOR amplitude (angle between the maximal up and down movement of an eye during a complete 360 degree lateral roll) of micro g-animals increased significantly by 25% compared to 1 g-controls during the first post-flight week but decreased to the control level during the second post-flight week. Microgravity had no effect in stage 14/16 fish on the rVOR amplitude. After 3 g-exposure, the rVOR amplitude was significantly reduced for both groups compared to their 1 g-controls. Readaptation to 1 g-condition was completed during the second post-3 g week. We postulate a critical period during which the development of the macular vestibuloocular reflex depends on gravitational input, and which is limited by the first appearance of the rVOR. At this period of early development, exposure to microgravity sensitizes the vestibular system while hypergravity desensitizes it.  相似文献   

14.
Aquatic animals have almost no body weight related proprioception for spatial orientation. larvae, like fish, maintain their attitude in water by continuous correction with their fin(s). For these reasons a special performance of the equilibrium system compared to terrestrial animals is necessary. Evidently fish therefore have more compact (dense) otoliths; larvae have less dense otolith (membranes) similar to land vertebrates; but their sacculus-otoliths are vertically positioned, which also may lead to a higher g-sensitivity.

For plausibility reasons gravity should influence the embryonic development of gravity receptors. Yet, evaluations of photographs taken from the surface of cut deep-frozen objects by incident light show no aberration of the shape of the whole vestibulum and of the shape, density, size and position of the otolith membrane in larvae developed under near-zero g (NEXPA-BW-STATEX in D1-Mission).

The further evaluation of the “weightless-larvae” revealed a probably not yet described statolith-like formation in the dorsal wall of the vestibulum. In the weightless larvae this formation outnumbers, also qualitatively, strongly the 1-g controls.

An extra result is the lack of striking effects of cosmic radiation on the embryonic development of the flown eggs.

The swimming behavior of the larvae which was observed about one hour after landing of the Space Shuttle showed a typical anomaly (loop swimming), which is known from larvae developed on the clinostat or from fish flown aboard Apollo capsules.  相似文献   


15.
One hypothesis for the explanation of the so-called "loop-swimming" behaviour in fish when being subjected to reduced gravity assumes that the activities of the differently weighted otoliths of the two labyrinths are well compensated on ground but that a functional asymmetry is induced in weightlessness, resulting in a tonus asymmetry of the body and by this generating the "loop-swimming" behaviour. The basis of this abnormal behaviour has to be searched for in the central nervous system (cns), where the signal-transduction from the inner ear- related signal internalisation to the signal response takes place. Circuits within the CNS of fish, that could possibly generate the "loop-swimming", might be as follows: An asymmetric activation of vestibulospinal circuits would directly result in a tonus asymmetry of the body. An asymmetric activation of the oculomotor nucleus would generate an asymmetrical rotation of the eyes. This would cause in its turn asymmetric images on the two retinas, which were forwarded to the diencephalic accessory optic system (AOS). It is the task of the AOS to stabilize retinal images, thereby involving the cerebellum, which is the main integration center for sensory and motor modalities. With this, the cerebellar output would generate a tonus asymmetry of the body in order to make the body of the fish follow its eyes. Such movements (especially when assuming an open loop control) would end up in the aforementioned "loop-swimming" behaviour.  相似文献   

16.
A flight experiment, ASTROCULTURE(TM)-1 (ASC-1), to evaluate the operational characteristics and hardware performance of a porous tube nutrient delivery system (PTNDS) was flown on STS-50 as part of the U.S. Microgravity Laboratory-1 mission, 25 June to 9 July, 1992. This experiment is the first in a series of planned ASTROCULTURE(TM) flights to validate the performance of subsystems required to grow plants in microgravity environments. Results indicated that the PTNDS was capable of supplying water and nutrients to plants in microgravity and that its performance was similar in microgravity to that in 1g on Earth. The data demonstrated that water transfer rates through a rooting matrix are a function of pore size of the tubes, the degree of negative pressure on the 'supply' fluid, and the pressure differential between the 'supply' and 'recovery' fluid loops. A slightly greater transfer rate was seen in microgravity than in 1g, but differences were likely related to the presence of hydrostatic pressure effects at 1g. Thus, this system can be used to support plant growth in microgravity or in partial gravity as on a lunar or Mars base. Additional subsystems to be evaluated in the ASTROCULTURE(TM) flight series of experiments include lighting, humidity control and condensate recovery, temperature control, nutrient composition control, CO2 and O2 control, and gaseous contaminant control.  相似文献   

17.
Mutant Medaka ha exhibit spontaneous mutation that is characterized by frequent inhibition or perturbation in the formation of utricular otoliths and/or semicircular canals. Three major features of otolith morphogenesis were observed in ha strain: 1) The initial appearance of otoliths was delayed, mispositioned, and malformed compared to normal embryos. 2) No utricular otoliths appeared on macula of any ha fry just after hatching. A symmetric state of otoliths was seen only when saccular otoliths were situated on macula in both inner ears. 3) In some fry, formation of utricular otoliths was observed in their later development. However, no new utricular otoliths appeared after fish were seventy or more days old after hatching. These observations show that otolith morphogenesis in ha is very different from that of wild-type. In this study, we classified adult ha into four different phenotypes using the existence or absence of utricular otoliths as our criteria. We concluded that dysfunction of utricular otoliths and semicircular canals cause a defect that affects the gravity-sensing abilities of medaka ha.  相似文献   

18.
根据详细的燃料氧化机理和多环芳烃生成机理,对乙烯同轴射流火焰在重力变化下碳烟生成情况进行计算.认为碳烟的初始成核是由两个较大的多环芳烃(PAH)二聚而成,碳烟的表面生长机理为HACA,凝结过程主要考虑PAH与碳烟的碰撞吸附,碳烟生长和氧化过程耦合在分节气溶胶模型中.计算结果表明,微重力条件下乙烯同轴射流火焰峰值温度下降230K,碳烟浓度显著增加,且浓度峰值在微重力条件下更加偏离中心线.分析重力变化对碳烟前驱体乙炔和多环芳烃的分布、初始成核速率、表面生长速率及凝结速率的影响.结果表明碳烟在中心轴线上主要是通过凝结过程生成的,且微重力条件下PAH在碳烟表面的凝结更加重要.由于微重力条件下停留时间更长,导致碳烟直径更大.   相似文献   

19.
In Zea mays L., changes in orientation of stems are perceived by the pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. Gravity is perceived in the bundle sheath cells, which contain amyloplasts that sediment to the new cell base when a change in the gravity vector occurs. The mechanism by which the mechanical signal is transduced into a physiological response is so far unknown for any gravity perceiving tissue. It is hypothesized that this involves interactions of amyloplasts with the plasma membrane and/or ER via cytoskeletal elements. To gain further insights into this process we monitored amyloplast movements in response to gravistimulation. In a pharmacological approach we investigated how the dynamics of plastid sedimentation are affected by actin and microtubule (MT) disrupting drugs. Dark grown caulonemal filaments of the moss Physcomitrella patens respond to gravity vector changes with a reorientation of tip growth away from the gravity vector. MT distributions in tip cells were monitored over time and MTs were seen to accumulate preferentially on the lower flank of the tip 30 min after a 90 degree turn. Using a self-referencing Ca2+ selective ion probe, we found that growing caulonemal filaments exhibit a Ca2+ influx at the apical dome, similar to that reported previously for other tip growing cells. However, in gravistimulated Physcomitrella filaments the region of Ca2+ influx is not confined to the apex, but extends about 60 micrometers along the upper side of the filament. Our results indicate an asymmetry in the Ca2+ flux pattern between the upper and side of the filament suggesting differential activation of Ca2+ permeable channels at the plasma membrane.  相似文献   

20.
The origin of the proteinacious matrix of the inner ear stones (otoliths) of vertebrates has not yet been clarified. Using the backstroke mutant (bks) of the zebrafish Danio rerio, which is characterized by a complete lack of otoliths, we searched for possibly missing or aberrant structural components within the macular epithelia of the inner ears of embryos on the ultrastructural level. Numerous multilamellar bodies (MLBs) were found. The MLBs were, however, not restricted to the inner ears of mutants but were also found in wildtype individuals and in further organs such as brain and liver. MLBs have hitherto never been described from the inner ear of fish and are generally estimated to be rare structures. Their occurrence in fish liver can, however, be induced by using particular chemical substances, which seem to effect adaptive compensatory processes on the cellular level. Such a chemical treatment also affects the ultrastructure of further organelles. Since the occurrence of MLBs in the liver of zebrafish was not accompanied by an alteration of the morphology of other organelles, their occurrence seems not to be due to environmental stress. The findings indicate that the MLBs cannot be correlated with bks-inherent features as well as with missing otolith development/growth. Since the occurrence of MLBs was independent from the developmental stage of a specimen and its overall tissue preservation, it can moreover be excluded that these MLBs merely represent fixation artifacts. Their presence more likely indicates cellular remodelling processes of hitherto unknown significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号